Таблица 6

Нагрузка

Постоянная нагрузка, кН

Временная нагрузка

Основание

длительная, кН/м2

кратковременная, кН/м2

Снеговая нагрузка

0,3??1,55 = 0,47

0,7??1,55 = 1,08

СНиП 2.01.07–85

Собственный вес

0,748

Итого

0,748

0,47

1,08

В соответствии с формулой [24] расстояние от нижней кромки асбестоцементного листа обшивки до центра тяжести всего сечения, приведенного к материалу каркаса, будет определено следующим образом:

преобразуем формулу [24], разделив числитель и знаменатель на (, так как верхней обшивки нет) и получаем:

.(4)

Таким образом, в примерах 2 – 4 будем преобразовывать используемые из СНиПа формулы, в которые входят сомножителями модули упругости каркаса и обшивок и .

см,

так как отношение модуля упругости обшивки к модулю упругости каркаса равно:

= (1,4??104)/(1??104) = 1,4.

Приведенный к материалу каркаса момент инерции всего сечения будет равен:

= 732,3 + 52(7,5 – 4,59)2 = 1172,64 см4;

= [2,3 + 28(4,59 – 0,5)2]1,4 = 659 см4;

= 1172,64 + 659 = 1831,64 см4.

Статический момент нижней обшивки относительно центра тяжести сечения будет равен:

= 1,4??28(4,59 – 0,5) = 160,33 см3.

Г. Определение геометрических характеристик плиты с учетом податливости связей каркаса с обшивкой

Принимаем шаг шурупов, с помощью которых прикрепляется асбестоцементный плоский лист к деревянному каркасу, равным 250 мм, т.е. на половине пролета имеется = 6 шурупов, не считая шурупа, установленного по середине пролета.

Учитывая, что расчет ведется для свободно опертых каркасных плит на действие равномерно распределенной нагрузки, коэффициент т определяем по формуле (2) Пособия.

В соответствии с графиком на [черт. 3] и при диаметре стального шурупа d = 0,4 см значение коэффициента равно:

= 62??105. Коэффициент = 1 для стального шурупа [п. 4.7] В нашем случае асбестоцементная обшивка имеется только в нижней части плиты, т.е. . Тогда

В соответствии с формулой [23] определим ограничение на т:

следовательно, т > т0.

Для расчета каркаса принимаем т = т0, а для расчета обшивок принимаем т = 0,714 (см. Общ. ч. настоящего Пособия).

Определим новое положение нейтральной оси с учетом податливости связей по формуле [18] и соответствующие моменты инерции каркаса и обшивки: для определения напряжений в обшивках

см;

= 732,3 + 52(7,5 – 5,05)2 = 1044,43 см4;

= 1,4[2,3 + 28(5,05 – 0,5)2] = 814,76 см4;

для определения напряжений в каркасе

см;

= 732,3 + 52(7,5 – 5,49)2 = 942,38 см4;

= 1,4[2,3 + 28(5,49 – 0,5)2] = 979,3 см4;

Д. Определение напряжений в крайних ребрах каркаса и обшивке плиты

Напряжения в обшивке и каркасе плиты определяются по [п. 4.12] и формулам [12], [13].

Определим коэффициент для расчета напряжений в обшивках и каркасе по формуле [19]:

для расчета напряжений в обшивках

для расчета напряжений в каркасе

По формуле [12] определяем напряжения в обшивке плиты.

Так как = 0, то

Мпа.

В месте контакта обшивки с каркасом

Мпа.

По формуле [13] определяем напряжения в крайнем ребре каркаса:

в сжатой зоне

= –13,49 МПа;

в растянутой зоне

= 7,91 МПа.

Определяем касательные напряжения в каркасе по формуле [14]:

= 942,38 + 979,30 = 1921,68 см4;

= 1,4??28(5,49 – 0,5) + 4,49??4??2,24 = 235,9 см3;

= 2,58??235,9/4??1921,68 = 0,79 МПа.

Определение напряжений в среднем ребре каркаса и обшивке плиты

А Подсчет нагрузок

На среднее ребро может случайно воздействовать сосредоточенная сила Р в середине пролета, равная собственному весу человека с инструментом. Согласно СНиП 2.01.07 – 85 сосредоточенная сила Р = 1 кН, а коэффициент перегрузки равен 1,2. Тогда расчетная величина РP = 1??1,2 = 1,2 кН.

Б. Определение усилий М и Q

Максимальное значение поперечной силы

кН.

Максимальное значение изгибающего момента

= 0,9 кН??м.

В. Определение геометрических характеристик плиты без учета податливости связей каркаса с обшивкой

Подбор сечения ребра осуществляется по той же схеме, что и подбор сечения крайних ребер.

Определим положение нейтральной оси в соответствии с [п. 4.9] без учета податливости связей ребра с обшивкой. Площадь поперечного сечения промежуточного ребра в два раза меньше крайнего, т.е. 6,5??4 = 26 см2. Ширина обшивки, включаемая в расчет, согласно [п. 4.3] будет равна b2 = 2??25 = 50 см.

Y = (26??4 + 50??0,5??l,4)/(26 + 50??1,4) = 1,448 см.

Момент инерции и статический момент сдвигаемой части сечения (обшивки) относительно нейтральной оси будут равны:

4??6,53/12 = 91,54 см;

91,54 + 26(4,25 – 1,448)2 = 295,67 см4;

1,4[50??13/12 + 50(1,448 – 0,5)2] = 68,74 см4;

50??1,4(1,448 – 0,5) = 64,36 см3;

295,67 + 68,74 = 364,41 см4.

Г. Определение геометрических характеристик плиты с учетом податливости связей каркаса с обшивкой

Угол поворота опорного сечения

По формуле [21] определяем величину т:

По формуле [23] получим:

Величины т и mо оказались практически равными. Принимаем т = 0,83 для расчета ребра и обшивки.

Определяем новое положение нейтральной оси в соответствии с [п. 4.4] по формуле [18]

Y = (26??4,25 + 50??0,5??1,4??0,83)/(26 + 0,83??50??1,4) = 1,66 см;

моменты инерции каркаса и обшивки будут равны:

91,54 +26(4,25 – 1,66)2 = 265,95 см4;

1,4[50??13/12 + 50(1,66 – 0,5)2] = 100 см4.

Д. Определение напряжений в среднем ребре

и редуцируемой части обшивки

По формуле [19] находим коэффициент = (365,95 –100??0,832)/(265,95 + 100–0,832) = 0,5886.

В обшивке напряжения определяются по формуле [12]

Мпа.

В среднем каркасе напряжения определяются по формуле [13]:

в сжатой зоне ребра

15,67 МПа;

в растянутой зоне ребра

1,774 МПа;

= 265,95 + 100 = 365,95 см4;

= 1,4??50(1,66 – 0,5) + 0,66??4??0,33 = 82,07 см3;

= 0,6??82,07/4??365,95 = 0,0337 МПа.

Проверка прочности элементов плиты

Проверка прочности элементов плиты проводится по [п. 4.1] и формулам [1] – [4].

А. Определение расчетных сопротивлений плоского прессованного асбестоцементного листа

Прессованный плоский асбестоцементный лист принят в соответствии с [п. 6.2].

В соответствии с ГОСТ 18124 – 75* первый сорт прессованного асбестоцементного плоского листа имеет временное сопротивление изгибу 23 МПа.

В соответствии с рекомендациями [п. 3.1] следует принимать временное сопротивление изгибу для расчета плиты, равное 23??0,9 = 20,7 МПа. Так как такого временного сопротивления изгибу в [табл. 1] нет, то следует принимать значения расчетных сопротивлений асбестоцемента, находящиеся в ближайшей графе, т.е. соответствующие временному сопротивлению изгиба 20 МПа. Следовательно = 30,5 МПа, = 8,5 МПа и = 14,5 МПа.

Кроме этого, расчетные сопротивления следует умножить на коэффициент условия работы в соответствии с [п. 3.2а].

Так как нормальные напряжения пропорциональны нагрузкам, то можно записать коэффициент условия работы в виде

Тогда = 30,5??0,653 = 19,92 МПа;

= 8,5??0,653 = 5,55 МПа;

= 14,5??0,653 = 8,47 МПа.

Так как плита эксплуатируется в помещениях с повышенной влажностью (75 %), то необходимо ввести дополнительный коэффициент условия работы согласно [п. 3.2б,] равный = 0,8. Следовательно,

= 19,92??0,8 = 15,95 МПа;

= 5,55??0,8 = 4,45 МПа;

= 8,47??0,8 = 6,88 МПа.

Определение расчетных сопротивлений каркаса и производится по СНиП II–25–80 "Деревянные конструкции" для древесины II категории расчетное сопротивление древесины вдоль волокон сжатию = 13 МПа, растяжению = 10 МПа, скалыванию = 1,6 МПа.

Принимая, что конструкция плиты будет эксплуатироваться в помещениях с влажностью внутри помещений до 75 % и в соответствии с табл. 2 СНиП II–25–80, температурно–влажностные условия эксплуатации будут соответствовать категории А2 при установившейся температуре воздуха до 35 °С. Коэффициент условия работы = 1 принимается в соответствии с [п. 3.2а,б].

Кроме того, в соответствии с п. 3.2 СНиП II–25–80 напряжения от постоянных и длительно действующих нагрузок не превышают 80 % от напряжений, возникающих от всех видов нагрузок.

Б. Проверка прочности крайних ребер каркаса и обшивки плиты

Напряжения в крайнем ребре:

= 13,49 Мпа < = 13 МПа (с точностью до 5 %);

= 7,91 Мпа < = 10 МПа;

= 0,79 Мпа < = 1,6 МПа.

Напряжения в обшивке, в зоне крепления к крайним ребрам каркаса плиты = 4,3 МПа < = 4,45 МПа.

В. Проверка прочности среднего ребра и обшивки в зоне крепления к среднему ребру

В сжатой зоне среднего ребра напряжения превышают расчетные, однако так как воздействие сосредоточенной силы на среднее ребро носит случайный характер (по ТУ хождение по средним ребрам в момент монтажа покрытия запрещено), то полученные напряжения можно сравнить с нормативной величиной сопротивления древесины сжатию равной согласно СНиП II–25 – 80 23 МПа:

= 15,67 МПа < = 23 МПа;

= 1,774 МПа < = 10 МПа;

= 0,037 МПа < = 1,6 МПа.

Напряжения в обшивке = 5,184 МПа; = 6,88 МПа.

Расчет и проверка прочности элементов соединения

обшивок с каркасом

Расчет элементов соединения обшивок с каркасом следует производить по формуле [25]:

,

где определяется по формулам [62], [63] и [65].

Для расчета обшивок принят т = 0,714.

А. Определение левой части формулы [25]

Определение статических и геометрических характеристик:

= 28(5,05 – 0,5)1,4 = 178,36 см3;

= 1044,43 + 814,76 = 1859,19 см4;

= 6, (Мс – Мb) = 193,5 кН??см.

Левая часть формулы [25] будет равна:

0,814??178,36??193,5/5??1859,16??16 = 0,5 кН.

Б. Определение правой части формулы [25]

Из условия смятия материала каркаса правая часть формулы [25] определяется по формуле [62]:

см;

кН.

Правая часть формулы [25] из условия смятия обшивок определяется по формуле [65]:

= 0,6??0,4??1??19,92??10-1 = 0,48 кН.

В. Проверка прочности

Следовательно, левая часть формулы [25] с точностью до 5 % равна минимальному значению правой части.

Расчет и проверка прогиба плиты

Расчет плиты по предельному состоянию второй группы производится в соответствии с [пп. 4.24, 4.25].

В соответствии с [п. 4.24] предельный прогиб плит покрытий приведен в [табл. 7] и равен f/l = 1/200.

Максимальный прогиб в середине пролета плиты будет равен

Жесткость на изгиб D в в соответствии с [п. 4.25] определяется по формуле

.

Момент инерции поперечного сечения крайнего ребра определяем с минимальным из полученных т и то значений коэффициентов податливости, т.е. по формуле [16]:

= 942,38 + 979,3 = 1921,68 см4;

D = 1921,68??104 МПа??см4;

см, т.е.

ПРИМЕР 3. РАСЧЕТ ПЛИТЫ С ДЕРЕВЯННЫМ КАРКАСОМ ПОД РУЛОННУЮ КРОВЛЮ

Исходные данные для расчета плиты (рис. 2)

Расчетный пролет плиты l = 300 см.

Наиболее нагруженными являются два промежуточных ребра, так как нагрузка, воспринимаемая ребром, собирается с двух полупролетов справа и слева от ребра.

Рис. 2. Поперечите сечение плиты

1 – асбестоцементные плоские листы; 2 – доски; 3 – утеплитель

Расчет напряжений в элементах плиты

А. Подсчет нагрузок

Согласно проекту вес 1 м2 плиты 0,53 кН/м2.

Для Московской области снеговая нагрузка равна 1 кН/м2

Вес рулонного ковра принимаем 0,15 кН/м2, коэффициент перегрузки согласно СНиП 2.01.07 – 85 равен 1,2.

Постоянно действующая нагрузка будет равна (0,53 + 0,15)1,2 = 0,816 кН/м2.

Коэффициент перегрузки для снегового покрова согласно СНиП 2.01.07 – 85 будет равен 1,5675 1,57.

Временная длительно действующая нагрузка согласно СНиП 2.01.07–85 будет равна 0,3??1,57 = 0,47 кН/м2.

Кратковременно действующая снеговая нагрузка будет равна 0,7??1,57 = 1,1 кН/м2

Суммарная нагрузка составит

= 0,816 + 1,57 = 2,386 кН/м2.

Длительно действующая нагрузка составит

= 0,816 + 0,97 = 1,286 кН/м2.

Равномерно распределенная нагрузка на расчетное среднее ребро равна:

= 2,386??0,435 = 1,234 кН/м2;

= 1,286??0,435 = 0,559 кН/м2.

Б. Подсчет усилий М и Q

М = 1,234??32/8 = 1,38825 кН??м;

Q = 1,234??3/2 = 1,851 кН.

В. Определение геометрических характеристик расчетного сечения плиты

В соответствии с [п. 4.3] для сжатых обшивок принимаем часть обшивки, редуцируемой к ребру, по формуле [17]:

= 18 см, с двух сторон – 36 см;

= 25 см, с двух сторон – 50 см, т.е. сечение получается несимметричным (рис. 3).

Рис. 3. Расчетное сечение плиты

1 – асбестоцементные плоские листы; 2 – доска (каркас)

Определяем положение нейтральной оси сечения по формуле [24] без учета податливости соединений ребер каркаса с обшивками

Yо = (52??7,5 + 1,4??36??14,5 + 1,4??50??0,5)/[52 + (36 + 50)]1,4 = 6,7 см.

Определяем моменты инерции каркаса и обшивок.

Собственный момент инерции каркаса

= 4,133/12 = 732,33 см4.

Момент инерции каркаса относительно найденной нейтральной оси

= 732,33 + 52(7,5 – 6,7)2 = 765,6 см4.

Моменты инерции обшивок относительно нейтральной оси:

= [36??13/12 + 36(14,5 – 6,7)2]1,4 = 3070,54 см4;

= [50??13/12 + 50(6,7 –0,5)2]1,4 = 2696,63 см4.

Суммарный момент инерции сечения:

= 765,6 + 3070,54 + 2696,63 = 6532,77 см4.

Шурупы в плите расставлены с шагом 180 мм, т.е. = 8.

Статические моменты относительно нейтральной оси будут равны:

= 36(14,5 – 6,7)1,4 = 393,12 см3;

= 50(6,7 – 0,5)1,4 = 434 см3.

В соответствии с формулой [22] определяем коэффициент податливости соединений т: == 1, по графику [черт. 3] определяем = 62??10-5. Тогда

Определяем по [п. 4.8] и формуле [23]:

т >, т.е. для расчета прочности каркаса принимаем т =; для расчета прочности обшивок принимаем т = 0,698.

Положение нейтральной оси определяем по формуле [18] с учетом коэффициента податливости соединений ребер каркаса с обшивками при т = 0,698, т.е. при т для определения напряжений в обшивках.

Определяем положение нейтральной оси:

см.

Моменты инерции будут равны:

= 732,33 + 52(7,5 – 6,796)2 = 757,26 см4;

= [36??13/12 + 36(14,5 – 6,796)2]l,4 = 2995,52 см4;

= [50??13/12 + 50(6,796 – 0,5)2]1,4 = 2780,61 см4.