4.11. Продольные деформации бетона в процессе самонапряжения, принимаемые одинаковыми с деформациями арматуры, ??con2 и ????con2 при назначении деформационных швов определяются по формулам

??con2 = и ????con2 = , (15)

где ??con2, ????con2 принимаются согласно п. 3.3.

Распределение продольных деформаций бетона по высоте сечения принимается по линейному закону, за исключением зоны передачи напряжений арматуры на бетон.

4.12. При расчете деформаций кривизна элементов самонапряженных конструкций от самонапряжения бетона определяется по формуле

, (16)

??con2, ????con2 ?? определяются согласно п. 3,3;

??bp ?? принимается согласно п. 3.1.

Полную кривизну элемента для участка с трещинами в растянутой зоне, определяемую по формуле (170) СНиП 2.03.01-84, необходимо уменьшить на величину , определяемую по формуле (16) настоящего Пособия. '

Выгиб элемента длиной l определяется по формуле

.(17)

5. ПЕРЕРАСПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙ В СЕЧЕНИИ ЭЛЕМЕНТОВ С ПОМОЩЬЮ СИЛОВОЙ КАЛИБРОВКИ ПРИ САМОНАПРЯЖЕНИИ

5.1. Перераспределение напряжений в сечении элемента с помощью силовой калибровки производится для увеличения обжатия бетона в крайних волокнах, подверженных наибольшим растягивающим напряжениям в стадии эксплуатации, с соответствующим повышением трещиностойкости самонапряженной конструкции.

Силовая калибровка ?? ограничение поперечных деформаций (выгиба) несимметрично армированных элементов в процессе самонапряжения, осуществляемое путем наложения жестких связей, например стального кондуктора (черт. 1, а), или попарным сплачиванием в пакет элементов, выгибы которых происходят навстречу один другому (черт. 1, б). При снятии этих связей после завершения процесса самонапряжения происходит перераспределение напряжений по сечению элемента, т. е. равнодействующая обжатия получает эксцентриситет ер относительно центра тяжести бетонного сечения.

Черт. 1. Силовая калибровка самонапряженных элементов

а ?? в кондукторе или пакетом с упором посредине; б ?? пакетом с упором по плоскости

5.2. При ограничении поперечных деформаций самонапряженного элемента с помощью жесткого кондуктора с упором посредине или эквивалентным способом — попарным сплачиванием в пакет с одной прокладкой между ними посредине (см. черт. 1, а) ?? эксцентриситет равнодействующей обжатия принимается равным ер = 1,5 еs, в середине (под упором) с уменьшением до нуля на концах элемента по линейному закону. В этом случае при расчете ??bp коэффициент kе в формуле (1) принимается равным единице.

5.3. При ограничении поперечных деформаций путем сплачивания элементов в пакет эксцентриситет равнодействующей ер определяется по формуле

, (18)

где l ?? длина элемента;

хl — расстояние от начала элемента до рассматриваемого сечения.

Коэффициент kе в формуле (1) при этом принимается равным единице.

5.4. Напряжения и деформации арматуры при силовой калибровке элементов определяются из условия равновесия с самонапряжением бетона, определяемым по формуле (1), с учетом рекомендаций пп. 5.2 и 5.3.

6. КОНСТРУКТИВНЫЕ ТРЕБОВАНИЯ

6.1. При проектировании самонапряженных железобетонных конструкций для обеспечения условий их изготовления, долговечности и надежности, а также совместной работы арматуры и бетона следует выполнять требования разд. 5 СНиП 2.03.01-84 для тяжелого бетона и рекомендации пп. 6.2 ?? 6.9 настоящего Пособия.

6.2. В самонапряженных железобетонных конструкциях толщиной свыше 40 см необходимо предусматривать временные или постоянные каналы для увлажнения бетона в процессе твердения, чтобы расстояние от внутренних зон до увлажняемой поверхности не превышало 25 см.

6.3. Армирование конструкций рекомендуется предусматривать в двух, предпочтительней — в трех, направлениях для создания объемного предварительного напряжения, а основную рабочую арматуру — располагать возможно ближе к направлению главных растягивающих напряжений, применяя в необходимых случаях пространственные каркасы и криволинейную арматуру.

6.4. Конструкция основания и сопряжение элементов самонапряженных железобетонных конструкций со смежными элементами зданий и сооружений должны обеспечивать возможную свободу перемещений в период расширения бетона.

6.5. В покрытиях больших площадей целесообразно устраивать скользящие слои из двух слоев и более полимерных пленок и других рулонных материалов, в том числе с графитовой пудрой (для снижения трения покрытия по основанию).

Расстояние между деформационными швами и их ширина определяются расчетом с учетом деформаций самонапряжения (см. п. 4.11) и температурных деформаций, а также типа конструкций.

6.6. Соединение элементов конструкций с целью повышения трещиностойкости и водонепроницаемости стыка, замоноличиваемого бетоном на напрягающем цементе, следует выполнять стыкованием арматуры внахлестку или сваркой выпусков арматуры (закладных деталей), рассчитанных на восприятие действующих в стыке усилий от расширения бетона и от внешних воздействий (черт. 2).

Величина нахлестки петлевых выпусков стыка, измеренная на прямолинейном участке С, должна быть не менее:

при полностью растянутом от действия внешних сил сечении ?? 15d;

при наличии сжатой зоны — 10d.

Черт. 2. Стык элементов самонапряженных железобетонных конструкций, работающих на растяжение (распределительная арматура и анкера закладных деталей условно не показаны)

а - при стыковании арматуры внахлестку; б ?? при стыковании арматуры сваркой; 1 ?? рабочая арматура элемента; 2?? закладная деталь; 3 ?? соединительные накладки

6.7. При замоноличивании бетоном на напрягающем цементе сборно-монолитных или монолитных с временной разрезкой швами конструкций последние должны быть связаны между собой или с основанием упругими связями (выносной арматурой, анкерами и т. п.) таким образом, чтобы действие распора при расширении бетона на напрягающем цементе в швах создавало в бетоне конструкций предварительное обжатие.

6.8. Для сокращения зоны анкеровки стержневой арматуры в самонапряженных элементах и обеспечения обжатия бетона по всей длине элементов рекомендуется (при соответствующем технико-экономическом обосновании) окаймлять торцы элементов стальным профилем (швеллером, уголком и т.д.) и заанкеривать в нем напрягаемую арматуру (например, контактной сваркой).

6.9. Для повышения трещиностойкости самонапряженного стыка по контакту бетона стыка и сборных элементов и использования на этих участках сопротивления бетона растяжению целесообразно выполнять торцевые участки элементов переменной толщины (см. черт. 2), при этом длина участков должна превышать их толщину не менее чем в 2 раза.

ПРИЛОЖЕНИЕ 1

Обязательное

МЕТОДИКА ОПРЕДЕЛЕНИЯ САМОНАПРЯЖЕНИЯ НАПРЯГАЮЩЕГО БЕТОНА НА НАПРЯГАЮЩЕМ ЦЕМЕНТЕ

1. Самонапряжение напрягающего бетона на напрягающем цементе (НЦ) определяется при подборе состава и контроле качества бетона самонапряженных железобетонных конструкций для обеспечения расчетного самонапряжения конструкции — обжатия бетона и соответствующего натяжения арматуры.

2. Самонапряжение бетона Rbs определяется на контрольных образцах-призмах размером 10??10??40 см, отформованных и твердеющих при нормальных влажных условиях (см. пп. 8 и 9 настоящего приложения) в динамометрическом кондукторе, создающем в процессе расширения бетона образца упругое ограничение деформаций, эквивалентное продольному армированию, равному 1 %.

3. Для испытаний применяется следующее оборудование:

а) динамометрический кондуктор для образца-призмы размером 10??10??40 см (см. чертеж);

б) измерительное устройство ("краб") с индикатором часового типа с ценой деления 0,01 мм для замера выгиба пластин кондуктора;

в) стальной эталон (пластина) для поверки измерительного устройства;

г) форма-опалубка (включающая днище и борта) для формирования образца;

д) емкость с водой для хранения кондукторов с образцами.

Динамометрический кондуктор для испытания образца-призмы размером 10??10??40 см

1 ?? динамометрический кондуктор; 2 ?? измерительное устройство с индикатором часового типа; 3 — бетонный образец-призма размером 10??10??40 см

4. Форма должна удовлетворять требованиям ГОСТ 22685-77.

5. До сборки кондуктора с формой производится затяжка гаек на тягах и снимается нулевой замер кондуктора с помощью измерительного устройства (??краба??), предварительно поверенного с помощью эталона на постоянство отсчета.

Температура кондуктора, измерительного устройства и эталона во время замера должна быть одинаковой.

6. Перед формованием образца форма должна быть собрана в кондукторе с помощью скоб на тягах кондуктора с минимальным зазором для исключения деформаций тяг.

7. Контроль самонапряжения бетона производится на бетонном заводе или на объекте у места укладки бетона в конструкцию.

Формование образцов производится в соответствии с ГОСТ 10180—78.

8. Отформованные в кондукторе образцы украшаются пленкой или другим водонепроницаемым материалом для защиты от потерь влаги.

9. Твердение образцов в кондукторе с формой до достижения бетоном прочности 8 — 15 МПа (80 — 150 кгс/см2), но не менее суток должно происходить в помещении с температурой воздуха 20 ± 2 °С, дальнейшее твердение в кондукторе со снятой формой (до 28 сут) ?? в воде или в обильно влажных опилках, песке и т. п.

Образцы, предназначенные для производственного контроля самонапряженного бетона, должны храниться в условиях, аналогичных условиям твердения бетона в конструкции.

10. Замеры кондукторов производятся ежедневно для бетона в возрасте 1 ?? 7 сут и далее в возрасте 10, 14 и 28 сут каждый раз с поверкой измерительного устройства с помощью эталона.

11. Величина самонапряжения образца Rbs определяется по формуле

,

где ??, l ?? соответственно полная деформация образца в процессе самонапряжения бетона и его длина;

??k — приведенный коэффициент армирования образца, принимаемый равным 0,01;

Es — модуль упругости стали кондуктора, принимаемый равным 2??105 Мпа (2??106 кгс/см2).

12. Самонапряжение бетона Rbs вычисляется как среднее арифметическое по результатам замеров трех образцов-близнецов в кондукторах, отформованных из одной пробы бетона.

ПРИЛОЖЕНИЕ 2

Рекомендуемое

ПРИМЕРЫ РАСЧЕТА САМОНАПРЯЖЕННЫХ КОНСТРУКЦИЙ

Пример 1. Расчет стенки круглого резервуара для воды. Резервуар представляет собой цилиндрическую (полигональную) емкость, заполненную водой; D = 24 м; Н = 3,6 м. Стенка из плоских панелей шириной 2,3 м (самонапряженные). Сопряжение с днищем ?? жесткое (заделка). Расчетная зона панели находится на расстоянии 0,4Н от днища. Растягивающее усилие N = 200 кН/м. Изгибающий момент в середине панели (вследствие полигональности, т. е. несоответствия оси стены окружности емкости) М = 8 кН??м (черт. 1).

Принимаем сечение стенки h = 140 мм, самонапряженный бетон классов В30, Вt2,4, марки Sp1,5, т. е. Rb = 17 МПа; Еb = 24 000 МПа; Rbt,ser = 2,4 МПа; Rbs = 1,2 МПа; сталь класса А-III; Rs = 365 МПа для диаметров 10 ?? 40 мм; Es = 200000 МПа; .

Производим расчет по прочности:

мм;

мм;

h0 = 140 (15 + 5) = 120 мм

Черт. 1. Схема стенки цилиндрического резервуара

мм;

; ;

мм2;

мм2;

Принимаем арматуру ??10, шагом 150 мм (7 ??10 = 550 мм2).

Принимаем ?? 0,25; = 0,25??550 = 137 мм2; принимаем арматуру ??6, шагом 200 мм (5 ??6 = 142 мм2).

Суммарное армирование

?? + ??' = .

Напряжение обжатия бетона в сечении (самонапряжение)

??bp = Rbsk??kske,

где

ks = 1,2;

;;

мм.

Таким образом, ??bp = 1,2??0,852??1,2??0,71 = 0,87 МПа.

Проверяем напряжения в арматуре от самонапряжения:

;

.

Увеличиваем сечение арматуры до 7 ??6 = 200 мм2 (??6, шаг 140 мм) соответственно:

?? + ??' = ,

тогда ;

??bp = 1,2??0,874??1,2??0,71 = 0,89 МПа.

.

Проверяем сечение по трещиностойкости.

К самонапряженным емкостям предъявляются требования I категории трещиностойкости, т. е. образование трещин не допускается:

;

.

Для простоты расчета считаем нейтральную ось расположенной посредине высоты сечения (х = h / 2) :

мм;

,

еор = 0, так как обжатие равномерное; силовая калибровка не применяется, тогда:

0,87??1000??140??40,4 мм = 4920720 H??мм;

Мr = N(eo +r) = 200000 (40 + 40,4) = 16 080 000 H??мм = 16,1??106 H??мм;

Мcrc = Rbt.ser Wpl + Мrp = 2,4??6 163 000 + 4 920 720 = 19 711 920 H??мм = 19,7??106 H??мм;

19,7??106 H??мм > 16,1??106 H??мм.

Следовательно, трещиностойкость обеспечена.

Если не нормировать марку бетона на осевое растяжение, то для бетона класса В30 можно принять Rbt.ser = 1,8 МПа и тогда

Мcrc = 1,8??6 163 000 + 4 920 720 = 16 014 120 = 16,01??106 H??мм;

16,1??106 Н??мм ?? 16,01??106 н??мм,

т.е. трещиностойкость расчетом также обеспечивается. Это дает основание не контролировать на строительной площадке прочность бетона на осевое растяжение и нормировать только класс бетона по прочности на сжатие В30 и марку бетона по самонапряжению Sр1,5.

Пример 2. Расчет железобетонной трубы в стальной оболочке диаметром 0,522 м. Труба (черт. 2) состоит из тонкостенной (?? = 1,5 мм) стальной спирально-сварной оболочки и железобетонного самонапряженного тела трубы с арматурным сварным каркасом. Снаружи оболочка защищена слоем асфальтопесчаной стяжки. Труба уложена в грунт на глубину Н = 4м.

Черт. 2. Многослойная самонапряженная труба

1 ?? тело трубы из напрягающего бетона; 2 ?? сварной арматурный каркас; 3 ?? стальная спирально-сварная оболочка; 4 ?? защитное покрытие

На трубу действуют ее вес, вес грунта, вес воды в трубе и внутреннее давление воды 0,75 МПа. Совокупность нагрузок создает â стенке трубы наибольшие расчетные изгибающие моменты в шелыге и под углом 105°:

Мcrc = + 2,27 кН??м; М1crc = 3,24 кН??м; Ncrc = 150 кН; N1crc = 150 кН.

В соответствии с п. 4.6 настоящего Пособия производим подбор сечения трубы с помощью прямого метода, изложенного в рекомендуемом приложении 3, с последующей проверкой его по СНиП 2.03.01-84.

Находим относительные характеристики сечения стенки трубы:

F = F1 = 0,29; В = В1 = 0,67; ??N = ????N = 0,5;

??sp = ; ????sp = 1;

?? = (0,67 ?? 0,47) (0,67 ?? 1 + 1) ?? (0,67 ?? 1 + 0,47) = 0,18;