2.1.7. Возможность пропуска конкретных или тяжеловесных транспортных средств с массой или осевыми нагрузками, превышающими установленную для сооружения грузоподъемность по эталонной нагрузке, определяют соответствующим расчетом с учетом пропуска нагрузки в контролируемом режиме.

2.1.8. Регулирование движения в неконтролируемом режиме по мосту с установленной грузоподъемностью по эталонным нагрузкам осуществляют с помощью соответствующих дорожных знаков по ГОСТ 10807-78 и ГОСТ 23457-86:

ограничение массы (знак 3.11) при грузоподъемности ниже, чем по АК = 11;

ограничение скорости автомобиля (знак 3.24), если это необходимо из-за состояния покрытия, деформационных швов, узла сопряжения моста с насыпью для снижения динамического воздействия;

ограничение интервала (знак 3.16) между грузовыми транспортными средствами для определенной группы автопоездов или автомобилей.

Если мостовое сооружение соответствует классу нагрузки не ниже A11, то все виды транспортных средств по схемам (таблица 2.1) и параметрам (таблица 2.3) должны пропускаться по сооружению в неконтролируемом режиме. При сниженной грузоподъемности сооружения для каждого транспортного средства по схеме таблицы 2.1 определяют наибольшую величину его массы, при которой транспортное средство может пропускаться по мостовому сооружению в неконтролируемом режиме. Перед сооружением устанавливают два знака 3.11 "ограничение массы" для 2-х и 3-осных автомобилей и отдельно для автопоездов. При этом знаки грузоподъемности для автопоездов устанавливают с указанием числа осей и соответственно допустимой их массы. Следует также устанавливать стенд с информацией при въезде на данный участок дороги с мостом и дублирующие стенды за 3 - от сооружения (на стендах, знаках указывают количество осей и соответствующие значения массы).

2.1.9. Грузоподъемность сооружения определяется несущей способностью наиболее слабого элемента. Расчет несущей способности элементов мостового сооружения следует производить с учетом фактических геометрических размеров элементов, влияния дефектов и повреждений на распределение усилий от постоянных и временных нагрузок на несущую способность элементов, с учетом прочностных и деформативных свойств материалов (бетона, арматуры, стали, древесины и др.) на рассматриваемый период времени.

2.1.10. Во всех случаях решению этих задач должно предшествовать обследование мостового сооружения, включающее:

- ознакомление с технической документацией для установления данных по сооружению и характера изменения его состояния, а именно: устанавливают год проектирования или строительства пролетного строения, нормативную временную вертикальную нагрузку, под которую запроектировано сооружение; по проекту - полную геометрию пролетного строения, конструкцию проезжей части и тротуаров, а также коммуникаций на мосту; типовой проект, по которому было возведено пролетное строение, если конструкция типовая; данные по авариям, связанным с повреждениями несущих элементов пролетного строения; грузоподъемность пролетного строения по предыдущему обследованию и время его проведения;

- уточнение расчетной схемы сооружения (пролетных строений, опор и их элементов) при необходимости с проведением испытаний;

- определение геометрических характеристик элементов по результатам замеров сечений (площади сечения элементов и их размеров, моментов сопротивления сечения, статических моментов и др.); для железобетонных конструкций определяют также положение арматуры, класс, ее количество и площадь в расчетных сечениях по проекту и исполнительной документации или производят вскрытие или просвечивание арматуры конструкций;

- определение прочностных и деформативных характеристик материалов конструкции (прочности бетона на сжатие, марки стали и арматуры, вида древесины); установление расчетных сопротивлений материалов и модуля упругости, которые следует принимать при определении несущей способности сечения;

- определение (прямым или косвенным путем) соответствия фактических размеров несущих элементов конструкций конструктивным требованиям проекта или СНиПа (по толщине элементов, защитному слою, расположению арматуры и др.);

- выявление дефектов и повреждений конструкций, влияющих на снижение грузоподъемности элементов и сооружения в целом.

2.1.11. Класс бетона и арматуры, их состояние определяют по технической документации или результатам натурных исследований (см. п. п. 3.1.13 - 3.1.15). Дополнительно необходима проверка на карбонизацию бетона и содержание в нем хлоридов, что позволяет предвидеть вероятность роста коррозии арматуры без вскрытия и оценивать качество бетона и арматуры при определении грузоподъемности железобетонных конструкций на ближайшую перспективу.

2.1.12. Прочностные характеристики и параметры пластичности и свариваемости сталей следует оценивать по рабочим чертежам КМ и КМД, данным заводских сертификатов либо по результатам испытаний образцов. В результате оценки должны быть установлены: фактическая марка стали, фактические свойства стали и их соответствие требованиям стандарта на сталь этой марки, действовавшим в период изготовления конструкций. Если металлоконструкции обследуемого сварного пролетного строения изготовлены до . и минимальная температура воздуха может быть ниже минус , то необходима дополнительная проверка хладостойкости стали с отбором специальных образцов и проб.

В первую очередь необходимо использовать имеющиеся сертификаты на стальной прокат, которые хранятся в архивах завода металлоконструкций.

2.1.13. Лабораторные исследования и испытания образцов, которые готовят из проб, отобранных из элементов обследуемых конструкций, проводят при отсутствии сертификатов или при недостаточности (противоречивости) содержащихся в них сведений, а также при обнаружении в конструкциях повреждений, которые могли быть вызваны низким качеством стали. В необходимых случаях исследования проводят при изыскании дополнительных резервов фактической несущей способности конструкций. При лабораторных исследованиях стали производят химический анализ, испытание образцов на растяжение и на ударный изгиб, выявление распределения сернистых включений в металл и металлографическое исследование.

2.1.14. На деревянных мостах состояние древесины и элементов оценивают по результатам внешнего осмотра материалов конструкции. Вид использованной древесины и другие характеристики принимают по данным технической документации.

2.1.15. Выявление дефектов и повреждений в конструкциях, которые могут влиять на грузоподъемность мостовых сооружений, производят при внешнем осмотре всех несущих элементов и других деталей. Это плита проезжей части, пролетные строения (балки, фермы и т.д.) и связи между ними, элементы опор и фундаментов.

В сталежелезобетонных пролетных строениях для оценки грузоподъемности необходимо проверять состояние плиты и ее соединение со стальными главными балками, т.к. отсутствие или разрушение цементного раствора между плитой и верхним поясом балки приводит к расстройству соединений, а расстройство связи плиты с балкой, в виде жестких упоров, ведет к резкому падению грузоподъемности пролетного строения.

В железобетонных конструкциях общее их состояние оценивают по состоянию арматуры, бетона, узлов сопряжения и соединения. Особое внимание необходимо обращать на состояние предварительно напряженных элементов, т.к. коррозия арматуры и потеря предварительного напряжения в конструкции также сильно снижают ее грузоподъемность.

В металлических конструкциях необходимо обращать внимание на коррозию металла и качество заклепочного, болтового и сварного соединений. В деревянных мостах выявляют места загнивания древесины, а также расстройство узлов сопряжения и соединения деталей и элементов.

2.1.16. Работы по обследованию сооружения проводят в соответствии с требованиями нормативных документов.

2.2. Основные принципы расчета грузоподъемности

2.2.1. Для установления грузоподъемности сооружения следует определять с учетом имеющихся изменений в статической схеме и влияния дефектов:

предельные усилия для расчетных элементов конструкций по

предельному состоянию (несущая способность S );

пред

расч

усилия, возникающие от постоянной нагрузки (S ) и от

пост

расч

пешеходов (S );

тол

долю усилия в расчетном элементе конструкции, которую можно

допустить от временной нагрузки, определяемой грузоподъемность

расч

сооружения (S ).

вр

2.2.2. Грузоподъемность, устанавливаемую по схеме нагрузки АК,

НК 80 и эталонным транспортным средствам, определяют, вычисляя

усилия от этих нагрузок S и сопоставляя их со значением

вр

расч расч

расчетного усилия (S ), при соблюдении условия: S = (S ).

вр вр вр

Класс нагрузки "К" принимают с точностью до 0,1 величины.

Одиночную массу по схеме НК 80 и эталонной нагрузки - до 1 тонны,

а осевой - до 0,1 тн.

2.2.3. Если грузоподъемность элементов сооружения выражается

через нагрузки по схеме АК или эталонных транспортных средств, то

долю расчетных усилий от временных нагрузок вычисляют для первого

случая загружения по СНиП, предусматривающего размещение нагрузки

на проезжей части, в которую не входят полосы безопасности, по

формуле:

расч расч расч расч

[S] = S - S - S - S . (2.1)

вр пред пост тол прочие

Если движение по сооружению осуществляется временно (например,

при производстве ремонтных работ и т.д.) по полосам безопасности

(второй случай загружения по СНиП), нагрузку от пешеходов на

тротуаре в формуле 2.1 допускается не учитывать.

Если грузоподъемность сооружения выражается через одиночную

нагрузку по схеме НК 80 с загружением согласно СНиП, то

допускаемые значения расчетных усилий от временных нагрузок

вычисляются по формуле (2.1) без учета нагрузки от пешеходов,

т.е.:

расч расч расч

[S] = S - S - S . (2.2)

вр пред пост прочие

В формулах 2.1 и 2.2 S - предельное усилие, воспринимаемое

пред

элементом конструкции и рассчитываемое согласно указаниям разделов

расч

3 - 6; S - расчетное усилие в сечении от постоянной нагрузки и

пост

расч

S - усилие от толпы на тротуаре, определяемое по СНиП,

тол

расч

[S] - предельное значение расчетного усилия от временной

вр расч

нагрузки, воспринимаемой элементом, S - усилия от других

прочие

нагрузок и воздействий, учитываемых совместно с вертикальной

нагрузкой от транспортных средств, определяемой по СНиП.

2.2.4. Задача определения грузоподъемности может быть решена

как теоретически, так и экспериментально-теоретическими методами.

Теоретический метод следует применять в случаях достаточной

информационной базы (возможности вычисления действительной

жесткости элементов конструкции, имеющих дефекты, и возможности

выбора конкретной расчетной схемы при наличии дефектов отдельных

связей в пространственной системе пролетного строения и ее

расчета).

При теоретическом методе значения S от временной подвижной

вр

вертикальной нагрузки вычисляют по результатам загружения линий

(поверхностей) влияния усилий в рассчитываемых элементах с учетом

дефектов (и без них), применяя, в основном, расчетные программы,

разработанные многими учебными, научно-исследовательскими и

проектными институтами (МАДИ, ЦНИИС, Союздорпроект, ГипродорНИИ,

его филиалы и др.), позволяющие получать ординаты линий

(поверхностей) влияния усилий в балках и опорах.

Для построения ординат поперечных линий (поверхностей) влияния в пролетных строениях с дефектами могут быть также использованы соответствующие таблицы Приложений Б и В для железобетонных конструкций.

2.2.5. Экспериментально-теоретический метод используют в случаях, когда влияние дефектов конструкции не может быть определено теоретически.

При этом методе определяют экспериментально жесткостные характеристики (деформации) отдельных элементов в пространственной системе пролетного строения и ординаты для построения поперечных линий влияния усилий на главные балки пролетных строений. По этим данным определяют грузоподъемность как в теоретическом методе.

Для определения усилий в железобетонных главных балках используют экспериментально полученные по результатам испытания моста поперечные линии влияния прогибов, кривизны или относительные удлинения (в уровне центра тяжести растянутой арматуры). Результатом обработки этих данных являются ординаты линии влияния коэффициентов поперечного распределения усилий в середине пролета главных балок.

2.2.6. Необходимость проведения испытания сооружения устанавливает организация, проводящая обследование, в зависимости от характера обнаруженных дефектов и возможности теоретического учета их влияния, а также от полноты информации о сооружении и возможности выявления всех дефектов при обследовании.

Статистические испытания проводят для определения прогибов и других характерных деформаций в сечениях главных балок, необходимых для расчета усилий. Подбор испытательной нагрузки производят расчетным путем. Испытания организуют в соответствии со СНиП 3.06.07-86.

2.2.7. Грузоподъемность мостового сооружения принимают по минимальной грузоподъемности, определяемой несущей способностью заведомо слабых элементов по усилиям, возникающим в основных расчетных сечениях элементов или сечениях с дефектами, влияющими на несущую способность элемента и (или) сооружения в целом.

2.2.8. Перечень основных дефектов и характер их влияния на расчетную схему, геометрические характеристики элементов, прочностные и деформативные свойства материалов, несущую способность и распределение усилий между элементами приведены в соответствующих разделах по определению грузоподъемности для железобетонных, металлических, сталежелезобетонных и деревянных пролетных строений и соответствующих опор.