11.4.6 Протокол определения

Результаты определения оформляют протоколом, в котором указывают:

- маркировку и размер образцов;

- данные о составе и возрасте бетона до нанесения системы покрытия;

- характеристики исследуемого материала покрытия (название, марку, обозначение стандарта или технических условий на материал, дату изготовления);

- технологию и условия нанесения системы защитного покрытия (температуру, относительную влажность воздуха, продолжительность сушки);

- дату и место проведения испытаний;

- результаты испытаний.

11.5 Метод определения адгезии покрытий к бетону

Метод определения адгезии покрытий к бетону состоит в измерении силы, необходимой для отрыва покрытия от защищаемой бетонной поверхности в направлении, перпендикулярном к плоскости покрытия, с помощью приклеенного металлического штампа («грибка») и динамометра.

Испытания на адгезию защитных покрытий к поверхности бетона и обработку результатов проводят в соответствии с ГОСТ 28574.

Приложение А
(справочное)

Проведение испытаний бетона в растворах кислот. Общие положения

А.1 Анализы по определению концентрации исходных и рабочих растворов кислот должны проводить специалисты, освоившие методы аналитической химии, с соблюдением всех требований по проведению лабораторных работ.

А.2 Испытания образцов проводят в растворах кислот с показателем рН = 2, 3, 4.

А.3 Показатель рН = -lgH+. В разбавленных водных растворах сильных кислот (HCl, HNO3, H2SO4) концентрация ионов водорода Н+ практически равна концентрации С этих кислот в растворах

pH= -lgH+ = -lgC. (A.1)

Для растворов этих кислот концентраций 0,01; 0,001; 0,0001 (10-2; 10-3; 10-4) рН равен соответственно 2, 3, 4. В растворах слабых кислот концентрация ионов Н+ равна

(A.2)

где Kд - константа диссоциации кислоты

(A.3)

Например, для муравьиной кислоты Кд = 1,5·10-5. Растворы концентрации 0,1; 0,01; 0,001 имеют рН соответственно 2,4; 2,91; 3,41.

А.4 Титрованные растворы готовят в соответствии с ГОСТ 25794.1 - ГОСТ 25794.3, а также с учетом следующих указаний.

Приготовление раствора кислоты заданной концентрации начинают с определения плотности концентрированной кислоты. По плотности рассчитывают содержание в граммах количества концентрированной кислоты в 1 см3 раствора. Например, необходимо приготовить 18 дм3 раствора соляной кислоты с рН = 2 (концентрация 0,01 моль/дм3).

В 1 дм3 соляной кислоты концентрации 0,01 моль/дм3 содержится 0,365 г HCl. Концентрированная соляная кислота плотностью 1,19 г/см3 содержит 0,4556 г/см3 HCl. Количество концентрированной кислоты для приготовления 18 дм3 раствора HCl концентрации 0,01 моль/дм3 равно (18×0,365)/0,4556 = 14,42 см3. Указанное количестве кислоты вливают в 18 дм 3 дистиллированной воды.

А.5 Количество кислоты в приготовленном растворе определяют следующим образом. К определенному количеству раствора, отобранному пипеткой из общего объема раствора, в присутствии кислотно-основного индикатора постепенно из бюретки приливают титрованный объем основания (гидроксида натрия) до наступления точки эквивалентности (нейтрализации) по переходу цвета окраски индикатора. Количество кислоты, содержащееся в испытуемом растворе до испытаний и в процессе испытаний, определяют по объему титрованного раствора гидроксида натрия (q1 и q2).

А.6 Растворы гидроксида натрия концентрации 0,1 и 0,01 моль/дм3 готовят растворением 4 и 0,4 г NaOH в воде в мерной колбе вместимостью 1000 см3. Добавлением воды доводят раствор до метки и перемешивают. Нормальность раствора гидроксида натрия определяют по раствору кислоты соответствующей концентрации, приготовленной из фиксанала.

А.7 Титрование растворов слабых кислот с рН = 2,4 - 2,7 (0,1 моль/дм3) проводят раствором гидроксида натрия концентрации 0,1 моль/дм3 при комнатной температуре.

Титрование сильных кислот с рН = 2-4 и слабых кислот с рН более 3 проводят раствором гидроксида натрия 0,01 моль/дм 3 при температуре кипения, чтобы исключить влияние угольной кислоты.

А.8 В качестве индикатора следует применять 2-3 капли раствора фенолфталеина.

Титрование сильных кислоте рН = 4 (0,0001 моль/дм3) проводят раствором гидроксида натрия концентрации 0,01 моль/дм3 из микробюретки.

А.9 С точностью 0,2 % раствором гидроксида натрия концентрации 0,01 моль/дм3 можно титровать растворы кислот с Кд более 1·10-6.

Приложение Б
(справочное)

Примеры расчета глубины разрушения бетона в растворах кислот

Пример 1 - Образцы из бетона марок по водонепроницаемости W8 и W16 испытаны в течение 10 сут в растворе серной кислоты с рН = 2 (0,01 моль/дм3). Состав бетона марки по водонепроницаемости W8 - Ц:П:Щ = 1:1, 3:2, 6, В/Ц = 0,42, Ц = 450 кг/м3, содержание СаО в цементе 62 %. Состав бетона марки по водонепроницаемости W16 - Ц:П:Щ = 1:1, 2:2, 4, В/Ц = 0,32, Ц = 495 кг/м3, модификатора бетона МБ 10-01 - 15 % массы цемента, содержание СаО в цементе 65 %.

За 10 сут испытаний количество растворенного цементного камня в пересчете на СаО составило для бетона марки W8 - ΣРСаО = 0,013 г/см2, для бетона марки W16 - ΣРСаО = 0,010 г/см2. Глубина разрушения, рассчитанная по формуле (3) для бетона марки W8, составляет

Глубина разрушения для бетона марки W16 составляет .

Каждые последующие 10 сут рассчитывают глубину разрушения бетона и строят график в координатах . Находят константу коррозионного процесса К по графику как тангенс угла наклона прямой и постоянную а и по формуле (4) рассчитывают глубину коррозии бетона в большие сроки.

Пример 2 - Расчет глубины разрушения бетона за 50 лет. Исходные данные те же, что в примере 1. Образцы испытаны в растворе молочной кислоты концентрации 0,001 моль/дм3, с рН = 3,75. Константа коррозионного процесса для бетона марки W8 - 8,3·10-3 см·сут1/2, для бетона марки W16 -2,8·10-3 см·сут1/2. Постоянная а равна нулю. Расчет по формуле (4) для бетона марки W8 дает результат:

Для бетона марки W16:

Приложение В
(справочное)

Прогнозирование глубины карбонизации бетона и длительности карбонизации защитного слоя бетона

Глубину карбонизации бетона Х за время τ в воздушной среде с концентрацией углекислого газа С рассчитывают по формуле

(В.1)

Глубину карбонизации бетона Х1 при концентрации углекислого газа в воздухе С1 за время τ1 можно рассчитать, если получены данные о результатах испытаний образцов в камере с повышенной концентрацией углекислого газа С2: глубина карбонизации бетона Х2, продолжительность испытаний τ2. Расчет выполняют по формуле

(B.2)

Время карбонизации τ1 защитного слоя толщиной X1 при концентрации углекислого газа в воздухе С1 рассчитывают по формуле

(В.3)

где С2 - концентрация углекислого газа в камере во время испытаний;

τ2- продолжительность испытаний;

Х2 - глубина карбонизации бетона за время испытаний.

Пример 1 - Рассчитывают глубину карбонизации бетона Х1, имеющего эффективный коэффициент диффузии углекислого газа 1·10-4 см2/с и реакционную емкость 43,2 см3/см3 за 50 лет при концентрации углекислого газа в воздухе 0,03 % (относительная величина 3·10-4):

Пример 2 - Рассчитывают глубину карбонизации бетона за 50 лет Х1, если за 7 сут. испытаний при концентрации углекислого газа 10 % глубина карбонизации бетона составляет 0,8 см:

Приложение Г
(справочное)

Расчет поправки к постоянной прибора для определения коэффициента диффузии хлоридов в бетоне

Готовят раствор KCl концентрации 1 моль/дм3, для чего 74,5 г химически чистого KCl растворяют в 500 дм3 дистиллированной воды и добавлением воды доводят объем раствора до 1000 дм3.

Измеряют внутренний диаметр трубки D и расстояние между средними электродами l с точностью до 0,01 см. Заливают в трубку раствор так, чтобы над верхним электродом был слой раствора толщиной 2 см. Включают электрическую цепь установки и измеряют ток I и разность потенциалов при включенном токе ΔVKCl и после отключения тока ΔV*KCl.

Рассчитывают значение удельного электрического сопротивления ρэ раствора KCl по формуле

(Г.1)

Делением удельного электрического сопротивления 1 н. раствора KCl, полученного из справочника, ρc на экспериментально полученное значение ρэ, рассчитывают значение поправки П по формуле

(Г.2)

Вычисляют постоянную прибора K по формуле

(Г.3)

Пример - Диаметр трубки прибора равен 1,40 см, расстояние между электродами 7 см, температура 23 °С, ток 1,35·10-3 А, разность потенциалов ΔVKCl равна 0,052 В и ΔV* KCl =0,000 В, тогда

Повторяют определение три раза и получают значения: 8,466; 8,352; 8,869 Ом·см; в среднем 8,562 Ом·см. По справочнику находят, что раствор KCl концентрации 1 моль/дм3 при температуре 23 °С имеет удельное сопротивление 9,268 Ом·см. Значение поправки П равно:

Затем вычисляют значение постоянной прибора К:

Приложение Д
(справочное)

Расчет тока коррозии по поляризационной кривой

Ток коррозии рассчитывают по значению поляризационного сопротивления R, рассчитанному для начального участка поляризационной кривой при смещении потенциала от установившегося значения не более чем на 10 мВ.

Поляризационное сопротивление R, Ом, рассчитывают по формуле

(Д.1)

где ΔV - смещение потенциала от установившегося значения, В;

Δi - изменение тока при указанном смещении потенциала, А.

Ток коррозии iкор, А/см2, рассчитывают по формуле

(Д.2)

где В - коэффициент, равный 0,052 В для пассивной стали и 0,026 В для корродирующей стали;

R - по формуле (Д.1).

Критическим (пассивное состояние) является ток коррозии 1·10-7 А/см2 (0,1 мкА/см2), соответствующий скорости коррозии 1 мкм/лет.

Ключевые слова: бетон, железобетон, защита от коррозии, методы испытаний, коррозионная стойкость, защитные покрытия, защитное действие бетона, стальная арматура, коррозионные испытания, агрессивные среды, диффузионная проницаемость, коррозионное растрескивание