В матрице использована следующая классификация риска:

В - высокая величина риска;

С - средняя величина риска;

М - малая величина риска;

Н - незначимая величина риска.

Применительно к данному примеру серьезность последствия определяется следующим образом:

Катастрофическое

- практически полная потеря промышленного объекта или системы. Много смертельных исходов;

Значительное

- крупный ущерб промышленному объекту или системе. Несколько смертельных исходов;

Серьезное

- тяжелое ранение, серьезное профессиональное заболевание, серьезный ущерб промышленному объекту или системе;

Незначительное

- легкое ранение, профессиональное заболевание легкой формы или незначительное повреждение системы.

Примечание - Матрица риска приведена только в качестве примера.

Рисунок 4 - Матрица риска

Имеется много матриц риска, но наиболее подходящая для конкретного анализа матрица зависит от особенностей конкретного случая. Форма используемой матрицы должна фиксироваться в отчете вместе с оцениваемыми позициями всех рассматриваемых сценариев аварий независимо от того, подвергаются ли они в дальнейшем подробному количественному анализу.

Количественный анализ риска, как правило, требует оценок как частоты (или вероятности) нежелательного события, так и ассоциирующегося с ним последствия с целью установления меры риска. Тем не менее, в некоторых случаях, когда расчеты показывают, что последствия должны быть незначительными или частота должна быть чрезвычайно низкой, может быть достаточно оценки единственного параметра.

6.3.2.1 Анализ частот

Целью анализа частот является определение частоты каждого из нежелательных событий или сценариев аварий, идентифицированных на стадии идентификации опасности. Обычно используются три основных подхода:

а) использование соответствующих данных эксплуатации с целью определения частоты, с которой данные события происходили в прошлом, и, исходя из этого, определение оценок частоты, с которой они произойдут в будущем. Используемые данные должны соответствовать типу системы, оборудования или деятельности, подлежащих рассмотрению;

б) прогнозирование частот событий с использованием таких технических приемов, как анализ диаграммы всех возможных последствий несрабатывания или аварии системы («дерева неисправностей») и анализ диаграммы возможных последствий данного события («дерева событий»). В том случае, когда статистические данные недоступны или не соответствуют требованиям, необходимо получить частоты событий посредством анализа системы и ее аварийных состояний. Числовые данные для соответствующих событий, в том числе данные о неисправности оборудования и ошибке человека, взятые из опыта эксплуатации или опубликованных данных, используются для определения оценки частоты нежелательных событий. При использовании методов прогнозирования важно обеспечить уверенность в том, что при анализе была учтена возможность нарушений режима работы системы, а также ее частей или компонентов, которые должны функционировать в случае возникновения отказов системы. При проведении анализа частот могут использоваться методы имитационного моделирования отказов оборудования и разрушений конструкции вследствие старения, а также других деградационных процессов;

в) использование мнения экспертов. Существует ряд методов для составления экспертного мнения, которые исключают двусмысленность оценок, помогают в постановке соответствующих вопросов. Экспертные оценки должны учитывать всю имеющуюся информацию, в том числе статистическую, экспериментальную, конструктивную и т. д. Имеющиеся в наличии методы предусматривают метод Делфи, парных сопоставлений, классификации групп риска и др.

Анализ диаграммы возможных отказов или аварии системы («дерева неисправностей») и анализ диаграммы возможных последствий отказов («дерева событий») изложены в приложении А. В МЭК 61025 [2] детально рассматривается анализ «дерева неисправностей».

6.3.2.2 Анализ последствий

Анализ последствий предусматривает определение результатов воздействия на людей, имущество или окружающую среду в случае наступления нежелательного события. Для расчетов рисков, касающихся безопасности (работающих или неработающих людей), анализ последствий представляет собой приблизительное определение количества людей, которые могут быть убиты, ранены или иметь серьезные поражения в том случае, если произойдет нежелательное событие.

Нежелательные события обычно состоят из таких ситуаций, как выброс токсичных материалов, пожары, взрывы, излучение частиц из разрушающегося оборудования и т. д. Модели последствий требуются для прогнозирования размера аварий, катастроф и других явлений. Знание механизма высвобождения энергии или материала и происходящих с ними последующих процессов дает возможность прогнозировать соответствующие физические процессы заранее.

Существует множество методов оценки такого рода явлений, диапазон которых простирается от упрощенных аналитических подходов до очень сложных компьютерных моделей. При использовании методов моделирования необходимо обеспечить соответствие той проблеме, которая подлежит рассмотрению.

ПРИЛОЖЕНИЕ А

(справочное)

Методы проведения анализа

А.1 Исследование опасности и связанных с ней проблем (HAZOP)

HAZOP является формой анализа видов и последствий отказов (FMEA). Исследования HAZOP первоначально были разработаны для химической промышленности. Это процедура идентификации возможных опасностей по всему объекту в целом. Она особенно полезна при идентификации непредвиденных опасностей, заложенных в объекте вследствие недостатка информации при разработке, или опасностей, проявляющихся в существующих объектах из-за отклонений в процессе их функционирования.

Основными задачами метода являются:

а) составление полного описания объекта или процесса, включая предполагаемые состояния конструкции;

б) систематическая проверка каждой части объекта или процесса с целью обнаружения путей возникновения отклонений от проектного замысла;

в) принятие решения о возможности возникновения опасностей или проблем, связанных с данными отклонениями.

Принципы исследований HAZOP могут применяться по отношению к техническим объектам в процессе их функционирования либо на различных стадиях проектирования. Исследование HAZOP, осуществляемое во время начальной стадии проектирования, может выполнять руководитель проекта.

Наиболее распространенная форма исследования HAZOP осуществляется на стадии рабочего проекта и носит название исследования HAZOP II.

Исследование HAZOP II предусматривает следующие этапы:

Этап 1 - определение целей, задач и области применения исследования, например выделение опасности, характеризующейся только нелокальными последствиями или только локальными последствиями, участков промышленного объекта, подлежащих рассмотрению, и т. д.;

Этап 2 - комплектование группы по исследованию HAZOP. Данная группа должна состоять из проектировщиков и эксплуатационников, обладающих достаточной компетентностью для оценки последствий отклонений от условий функционирования системы;

Этап 3 - сбор необходимой документации, чертежей и описаний технологического процесса. Сюда входят графики последовательности технологических операций; чертежи трубопроводов и измерительного оборудования; технические условия на оборудование, трубопроводы и измерительную аппаратуру; логические диаграммы управления технологическим процессом; проектные схемы; методики эксплуатации и технического обслуживания; методики реагирования на чрезвычайные ситуации и т. д.;

Этап 4 - анализ каждой основной единицы оборудования и всего вспомогательного оборудования, трубопроводов и контрольно-измерительной аппаратуры с использованием документов, собранных на этапе 3. В первую очередь определяется цель проектирования технологического процесса, затем применительно к каждой линии и единице оборудования по отношению к таким переменным процесса, как температура, давление, расход, уровень и химический состав, применяются слова-указатели (по таблице А.1). (Данные слова-указатели стимулируют индивидуальное мышление и побуждают к коллективному обсуждению);

Этап 5 - документальное подтверждение любого отклонения от нормы и соответствующих состояний. Кроме того, осуществляется выявление способов обнаружения и/или предупреждения отклонения. Данное документальное подтверждение обычно указывается на рабочих листах HAZOP. Образец такого рабочего листа слов-указателей «не, нет» по отношению к «расходу» представлен в таблице А.2.

Таблица А.1 - Слова-указатели HAZOP II

Слово-указатель

Определение

Нет или не

Ни одна из частей предполагаемого результата не достигается (например, нет расхода)

Больше

Количественное увеличение (например, высокое давление)

Меньше

Количественное уменьшение (например, низкое давление)

А также

Качественное увеличение (например, дополнительный материал)

Часть (чего-то)

Качественное уменьшение (например, только один или два компонента в смеси)

Обратное

Противоположное (например, противоток)

Иначе

Ни одна из частей замысла не осуществляется, происходит что-то совершенно другое (например, поток несоответствующего материала)

Таблица А.2 - Образец рабочего листа слов-указателей «не, нет» HAZOP II

Слово-указатель

Отклонение

Возможные причины

Последствия

Необходимое действие

Не, нет

Нет расхода

1) Отсутствие подаваемого материала

Выработка формуемого полимера будет снижена

а) Обеспечить хорошую связь с оператором

б) Предусмотреть сигнал низкого уровня на установочном резервуаре

2) Неисправен насос (множество причин)

Выработка формуемого полимера будет снижена

Предусмотреть сигнал низкого уровня на установочном резервуаре

3) Закупоривание линии или ошибочно закрытый клапан или не закрывается регулирующий клапан

Насос будет перегреваться

Установить линию рециркуляции на каждом насосе

Исследование HAZOP может выделить отклонения, для которых необходима разработка смягчающих мер. В тех случаях, когда смягчающие меры неочевидны или очень дороги, результаты исследования HAZOP дают возможность идентифицировать инициирующие события, необходимые для дальнейшего анализа риска.

А.2 Анализ видов и последствий отказов (FMEA)

FMEA представляет собой метод, преимущественно качественный, хотя его можно представить ив количественной форме, при помощи которого систематически идентифицируются последствия каждого отдельного компонента аварийных состояний. Это индуктивный метод, который основан на вопросе «что случится, если ... ?». Непременной отличительной чертой в любом FMEA является рассмотрение каждого основного компонента/части системы на предмет того, каким образом он достигает аварийного состояния и как это влияет на аварийное состояние системы. Как правило, анализ является описательным и организуется в форме составления таблицы или рабочего листа, предназначенной для информации. FMEA, безусловно, относится к аварийным состояниям компонента системы, причинным факторам и воздействиям этого состояния на систему в целом и представляет их в удобной форме.

FMEA представляет собой подход по принципу «снизу вверх» и рассматривает последствия аварийных состояний компонента по принципу «одно за один раз». Этот метод способен переработать достаточное количество данных, прежде чем стать затруднительным для реализации. Кроме того, результаты могут быть легко перепроверены другим человеком, знакомым с системой.

Главными недостатками метода являются избыточность, исключение из рассмотрения восстановительно-ремонтных действий и сосредоточение на авариях единственного компонента.

FMEA может распространяться на выполнение того, что называется «Анализом видов отказов, функционирования и критичности (FMЕСА)». При FMЕСА каждый выявленный отказ ранжируется в соответствии с вероятностью его возникновения и серьезностью его последствий.

FMEA и FMЕСА обеспечивают вклад в анализ такого рода, как анализ «дерева неисправностей» (анализ диаграммы всех возможных последствий несрабатывания или аварии системы). Наряду с применением по отношению к компонентам системы FMEA и FMЕСА могут использоваться и по отношению к ошибке человека; они могут использоваться как для идентификации опасности, так и для оценки вероятности (если только в системе имеет место ограниченный уровень избыточности). Более подробно FMEA и FMЕСА представлены в МЭК 60812 [1].

А.3 Анализ диаграммы всех возможных последствий несрабатывания или аварии системы (анализ «дерева неисправностей» (FТА)

FТА представляет собой совокупность приемов качественных или количественных, при помощи которых выявляются методом дедукции, выстраиваются в логическую цепь и представляются в графической форме те условия и факторы, которые могут способствовать определенному нежелательному событию (называемому вершиной событий). Неисправностями или авариями, идентифицируемыми в «дереве», могут быть события, связанные с повреждениями механической конструкции компонента, ошибками персонала или любыми другими событиями, которые влекут за собой нежелательное событие. Начиная с вершины событий выявляются возможные причины или аварийные состояния следующего, более низкого функционального уровня системы. Последующая поэтапная идентификация нежелательного функционирования системы в направлении последовательно снижающихся уровней системы приводит к искомому уровню системы, которым является аварийное состояние компонента. Пример «дерева неисправностей» для аварийного генератора представлен на рисунке А.1. Таблица наиболее распространенных символов «дерева неисправностей» представлена на рисунке А.2.