5.1.2 Влияние на состояние грунта в основании здания

Помимо изменений состояния самой конструкции вибрация вызывает изменения свойств грунта, на котором установлено здание. Одним из таких изменений является локальное уплотнение грунта, которое может привести к повреждению конструкции из-за неравномерной осадки под фундаментом здания. Если вибрация носит долговременный характер, то уплотнение грунта может произойти даже на большом расстоянии от источника вибрации, когда уровень вибрации мал и не способен оказать существенного прямого воздействия на конструкцию здания.

Еще более опасным явлением является разжижение грунта и потеря им несущей способности под воздействием вибрации. Особенно это относится к слабосвязанным водонасыщенным почвам.

Указанные явления являются косвенными эффектами воздействия вибрации на конструкцию здания, которые, как правило, нельзя определить по результатам измерений колебаний конструкции. Поэтому для проведения комплексной оценки воздействия вибрации рекомендуется привлекать специалистов-геотехников, особенно в тех случаях, если здания расположены на слабых грунтах.

5.2 Характеристики вибрации

5.2.1 Длительность возбуждения

Важной характеристикой источника вибрации является длительность создаваемого возбуждения. Кратковременные импульсы или последовательность таких импульсов, если они повторяются нерегулярно или с низкой частотой повторения, при которой отклик успевает затухнуть до прихода следующего импульса, не способны эффективно раскачать конструкцию здания на ее резонансных частотах.

Примечание - Обычно частота собственных колебаний небольших сооружений высотой до 12 м находится в диапазоне от 4 до 15 Гц, а частотасобственных колебаний элементов конструкции, таких как стены и перекрытия, - в диапазоне от 10 до 30 Гц и выше.

Но если здание в течение длительного времени подвергается воздействию непрерывной вибрации, то в отдельных точках конструкции максимальные значения колебания могут в 2,5 - 10 раз превышать значения колебаний грунта в месте его контакта с фундаментом здания. В соответствии с этим вибрацию классифицируют по длительности воздействия. Вибрацию считают кратковременной, если время действия источника недостаточно для накопления существенных усталостных повреждений конструкции, а также для того, чтобы раскачать конструкцию в резонансном режиме. Все остальные источники создают долговременную вибрацию.

5.2.2 Диапазон частот и уровень вибрации

Диапазон частот вибрации в разных точках здания зависит от источника возбуждения, свойств фунта, через который воздействие передается на конструкцию, и передаточных характеристик конструкции. При некоторых сочетаниях указанных факторов (например, при взрывах твердой породы, проводимых на небольшом расстоянии от здания, или при работе высокоскоростных машин) верхняя граница диапазона частот может достигать 1000 Гц. Однако в большинстве случаев при оценке риска повреждения конструкции здания вследствие воздействия на него вибрации техногенной природыдостаточно проводить анализ в диапазоне частот от 1 до 150 Гц.

Уровни вибрации могут колебаться от единиц до нескольких сотен миллиметров в секунду в зависимости от частоты возбуждения.

Характеристики вибрации, измеряемой на конструкции здания, для разных источников возбуждения техногенной природы приведены в таблице 11).

Таблица 1 - Типичный диапазон параметров вибрации зданий для некоторых источников возбуждения

Источник возбуждения

Диапазон частот, Гц

Диапазон перемещений, мкм

Диапазон скоростей, мм/с

Диапазон ускорений, м/с2

Длительность

Движение дорожного (рельсового) транспорта

1 - 80

1 - 200

0,2 - 50

0,02 - 1

Д/К

Взрывы

1 - 300

100 - 2500

0,2 - 500

0,02 - 50

К

Забивка свай

1 - 100

10 - 50

0,2 - 50

0,02 - 2

К

Работа машин вне здания

1 - 300

10 - 1000

0,2 - 50

0,02 - 1

Д/К

Примечание - В таблице применены следующие обозначения:

Д - долговременный процесс;

К - кратковременный процесс.

1) Данные таблицы 1 взяты из ИСО 4866:1990 «Mechanical vibration and shock - Vibration of buildings - Guidelines for the measurement of vibrations and evaluation of their effects on buildings» («Вибрация и удар. Вибрация зданий. Руководство по измерению вибрации и оценке ее воздействия на здание»).

5.3 Факторы, влияющие на риск повреждения конструкции

5.3.1 Общие положения

Отклик конструкции здания на передаваемую через грунт вибрацию зависит от типа фундамента, типа и состояния грунта в основании здания, особенностей и состояния конструкции здания и расстояния, на котором находится источник вибрации.

5.3.2 Тип фундамента и состояние грунта

Тип фундамента и состояние грунта определяют динамику системы на границе двух сред (грунт - фундамент здания). Так деформации фундамента, вызываемые сейсмическими волнами, прямо пропорциональны пиковому значению скорости в точке фундамента, но обратно пропорциональны скорости распространения этих волн в толще грунта. Поскольку скорость распространения сейсмических волн возрастает при увеличении жесткости грунта, то одним и тем же деформациям (потенциальным источникам появления трещин) будут соответствовать тем большие пиковые значения скорости, чем выше жесткость грунта. Таким образом, если конструкция фундамента обеспечивает высокую корреляцию между вибрацией фундамента и грунта, то для зданий, возведенных, например, на скальной породе, допустима вибрация фундамента с большими значениями скорости.

Геологический состав грунта влияет на изменение частотного состава вибрации, передаваемой от источника. Кроме того, от динамического взаимодействия грунта с фундаментом зависят значения собственных частот колебаний конструкции здания. В общем случае, чем выше жесткость фундамента и чем больше плотность грунта, тем выше значения собственных частот системы «грунт - фундамент здания».

5.3.3 Особенности конструкции

Реакция конструкции здания и ее элементов на передаваемую вибрацию зависит от передаточных свойств конструкции. Оценка воздействия вибрации, распространяющейся от одного и того же источника, будет разной в зависимости от конструкции здания. У старых кирпичных зданий высотой в один или несколько этажей собственные частоты колебаний, как правило, ниже, чем у современных высотных сооружений.

Собственные частоты колебаний элементов конструкции здания (панелей, балок) обычно выше, чем у конструкции в целом. Механические напряженияв балках и пластинах, возникающие при их колебаниях на частоте, близкой к резонансной, могут быть рассчитаны по результатам измерений вибрации в точках, где значение скорости наибольшее (см. приложение А). Однако даже значительные колебания посередине балок и панелей редко приводят кповреждению конструкции здания. Так, для современных строительных материалов механические напряжения, соответствующие пиковому значениюскорости 10 мм/с, когда вибрация становится явственно ощутимой, обычно находятся в диапазоне от 0,4 % до 2,3 % допустимого значения.

5.3.4 Расстояние до источника

При оценке воздействия вибрации измерения проводят в ограниченном числе точек конструкции (см. 8.1). Эти измерения могут полно характеризовать вибрационную энергию, передаваемую зданию сейсмическими волнами, только в том случае, если здание находится в дальнем поле источника. Если здание находится в ближнем поле, то при том же максимальном значении вибрации по фундаменту здания вибрационная энергия, передаваемая конструкции (и, как следствие, риск ее повреждения), будет меньше.

Другим важным моментом, который следует учитывать при рассмотрении зависимости от расстояния, является преобразование сейсмических волн изодного вида в другой. Чем больше расстояние от источника вибрации до здания, тем большая часть вибрационной энергии передается зданию поверхностными (релеевскими) волнами и тем меньше влияют на него волны сжатия и сдвига.

Кроме того, при увеличении расстояния происходит перераспределение энергии в область низких частот. Частота доминирующей составляющей (см.6.3) уменьшается. Поэтому, как правило, при одинаковых результатах измерений вибрации на фундаменте здания, чем больше расстояние от источника, темвыше риск повреждения конструкции (см. раздел 9).

6 Измеряемые величины

6.1 Общие положения

Многочисленные исследования показали, что параметром вибрации, в наибольшей степени коррелированным с риском повреждения конструкции здания, является пиковое значение скорости. Данный параметр характеризует энергию сейсмических волн, воздействующих на конструкцию. Однако помимо этого существует еще ряд факторов (см. 5.3), от которых зависит риск повреждения конструкции при данном пиковом значении скорости. Многие из этих факторов в той или иной степени связаны с частотным составом вибрации. Поэтому в большинстве известных критериев оценки вибрации используют дополнительный показатель - частоту доминирующей составляющей спектра сигнала.

6.2 Пиковое значение скорости

Основным параметром, используемым для оценки вибрации зданий, является пиковое значение скорости, измеряемое в направлении трех взаимноперпендикулярных осей х, у и z - vpeak,x, vpeak,y и vpeak,zсоответственно. Ось z направлена вертикально вверх. Направления горизонтальных осей х и у зависят отточки измерений и определяются особенностями геометрии конструкции в данной точке. Например, при установке датчика вибрации на вертикальной поверхности блока фундамента одну из горизонтальных осей выбирают в направлении нормали к данной поверхности, а при установке датчиков внутри здания направления измерений выбирают, по возможности, вдоль несущих элементов конструкции. Другой способ - направить одну из горизонтальных осей в сторону источника вибрации.

Для оценки вибрации определяют vpeak,max - наибольшее из пиковых значений, полученных для каждого направления измерений:

vpeak,max= max (vpeak,х, vpeak,у, vpeak,z)

В зависимости от типа используемого датчика вибрации измеряемой величиной, помимо скорости, может быть ускорение с последующим выполнением операции интегрирования.

Примечание - Поскольку пиковое значение сигнала чувствительно к фазовой характеристике измерительной цепи, следует убедиться, что инструментальная реализация процедуры интегрирования не вносит существенных фазовых искажений в сигнал скорости.

6.3 Частота доминирующей составляющей

Частоту доминирующей составляющей определяют следующим образом. На графике зависимости сигнала скорости от времени выделяют область подъема вибрации, где скорость имеет максимальное значение (если сигнал вибрации не имеет ярко выраженного импульсного характера, т.е. на всем периоде измерений уровень вибрации изменяется незначительно, то весь период измерений рассматривают как одну область). Применяя преобразование Фурье, определяют частотный состав вибрации для сигнала в выделенной области и находят доминирующие частотные составляющие этого сигнала (одну или несколько). Полученные значения частот доминирующих составляющих используют при оценке степени жесткости вибрации.

7 Средства измерений и анализа

7.1 Средства измерения пикового значения

Измерительная система должна обеспечивать измерение пикового значения скорости в диапазоне частот не менее чем от 1 до 250 Гц и в диапазоне измеряемых значений не менее чем от 1 до 500 мм/с, а также обеспечивать регистрацию времени наблюдения пикового значения.

Типичная измерительная система состоит из датчиков вибрации, устройств согласования сигнала, устройств хранения данных, полосового фильтра с плосковершинной частотной характеристикой в заданном диапазоне частот измерений и показывающих устройств. Если для дальнейшего анализа сигнала(во временной и частотной областях) используют устройства записи, эти устройства также входят в состав измерительной цепи.

Расширенная неопределенность измерений пикового значения сигнала при коэффициенте охвата, равном двум, обусловленная отклонением амплитудно-частотной и фазово-частотной характеристик измерительного тракта, разрешением системы по времени, нелинейностью системы в заданном динамическом диапазоне измерений, собственными помехами в измерительной цепи и взаимным влиянием каналов при работе в нормальных условиях окружающей среды, не должна превышать 20 %.

7.2 Датчики вибрации

Для измерений вибрации зданий обычно применяют акселерометры или датчики скорости (геофоны). При использовании акселерометров в состав измерительной цепи должно входить устройство интегрирования для получения сигнала скорости. Поскольку такая характеристика, как пиковое значение скорости, чувствительна к фазовым соотношениям в сигнале, особое внимание необходимо обращать на точность реализации фазово-частотной характеристики измерительной цепи, включающей акселерометр и устройство интегрирования.

При применении геофонов следует учитывать, что собственная частота колебаний таких датчиков находится в диапазоне от 6,5 до 9,5 Гц, т.е. попадает в диапазон измерений вибрации. После установки геофона, например, в грунт, собственная частота его колебаний изменяется, но по-прежнему может оставаться в пределах диапазона частот измерений. Поэтому необходимо, чтобы в измерительную цепь входило устройство компенсации (обычно программное) неравномерности частотной характеристики в диапазоне частот измерений.