Коррекция исходной спектральной плотности ускорения является рекуррентной процедурой, реализуемой с помощью цепи обратной связи системы управления. При этом эффективное время усреднения сигнала в данной процедуре зависит от нескольких факторов, таких как состав аппаратуры, передаточная функция системы в целом, форма задаваемой спектральной плотности ускорения, алгоритм управления и параметры испытаний, которые должны быть выбраны до проведения этих испытаний. В число указанных параметров испытаний входят максимальная частота анализа, разрешение по частоте и уровень отсечки задающего сигнала.

    

     Алгоритм управления случайной вибрацией должен обеспечивать компромисс между точностью управления и эффективным временем усреднения сигнала (быстродействием работы цепи обратной связи). Высокая точность управления предполагает увеличение числа данных, используемых в рекуррентной процедуре, и, соответственно, уменьшение быстродействия работы цепи обратной связи, т.е. замедление реакции на изменения реальной спектральной плотности ускорения. На точность управления и быстродействие цепи обратной связи влияет также выбранное разрешение по частоте. Обычно увеличение разрешения по частоте приводит к повышению точности управления, но уменьшает быстродействие цепи обратной связи. Чтобы уменьшить расхождение между истинной и наблюдаемой спектральными плотностями ускорения, необходимо подобрать оптимальные значения вышеуказанных параметров.

    

     Исследования частотной характеристики образца позволяют получить важную информацию о характере взаимодействия образца и вибростенда. Например, в ходе такого исследования может быть обнаружено чрезмерно большое усиление вибрации устройством крепления образца или совпадение резонансов образца и устройства крепления.

    

     В настоящем приложении, в первую очередь, рассмотрены вопросы, относящиеся к случайной составляющей возбуждения. В отношении гармонической составляющей возбуждения (качания частоты, скорости качания, использования следящих фильтров) можно руководствоваться рекомендациями ГОСТ 30630.1.2.

    

     В.2 Требования к испытаниям

    

     В.2.1 Одноточечное и многоточечное управление

    

     В.2.1.1 Общие положения

    

     Проверку соответствия требованиям испытаний проводят на основе значений контролируемого параметра, полученного в результате обработки сигнала в контрольной точке.

    

     Для жестких или малогабаритных образцов, например компонентов оборудования, а также в том случае, если известно, что влияние образца, жестко закрепленного на вибростенде, на динамику системы в диапазоне частот испытаний невелико, достаточно выполнять измерения в одной проверочной точке, которая тем самым становится контрольной точкой.

    

     В случае образцов больших размеров или сложной формы с далеко разнесенными точками крепления для управления используют одну из проверочных точек или воображаемую контрольную точку. В последнем случае спектральную плотность ускорения вычисляют по сигналам в нескольких проверочных точках. Для сложных или крупных образцов рекомендуется использовать управление по сигналу в воображаемой контрольной точке (см. 3.6.3).

    

     В.2.1.2 Одноточечное управление

    

     Измерения проводят в одной контрольной точке, и значение контролируемого параметра на каждой частоте непосредственно сравнивают с заданным.

    

     В.2.1.3 Многоточечное управление

    

     В.2.1.3.1 Общие положения

    

     При необходимости осуществления многоточечного управления выбирают одну из двух стратегий управления.

    

     В.2.1.3.2 Управление по среднему значению

    

     Данная стратегия управления предполагает вычисление контролируемого параметра на каждой частоте для каждой проверочной точки, после чего для вычисленных значений на каждой частоте находят арифметическое среднее по всем проверочным точкам.

    

     Полученные средние арифметические значения сравнивают с заданными значениями контролируемого параметра на каждой частоте.

    

     В.2.1.3.3 Управление по экстремальному значению

    

     При выборе данной стратегии управления значения контролируемого параметра на каждой частоте определяют как экстремальное значение в совокупности данных параметров, полученных для сигналов во всех проверочных точках. Таким образом, значения контролируемого параметра, по которому осуществляют управление, представляют собой огибающую значений контролируемого параметра, полученных для всех проверочных точек.

    

     В.2.2 Вероятностные характеристики

    

     В.2.2.1 Распределение мгновенных значений

    

     Распределение мгновенных значений  задающего случайного сигнала должно удовлетворять нормальному закону, описываемому формулой

    

,                                             (B.1)

    

где  - плотность вероятности распределения мгновенного значения задающего сигнала;

         

       - среднеквадратичное значение (стандартное отклонение) задающего сигнала.

    

     Среднее значение случайного сигнала вибрации предполагают равным нулю.

    

     Плотность вероятности распределения для совокупности случайных сигналов и сочетания узкополосного и широкополосного случайных сигналов показана на рисунке 2. Плотность вероятности распределения для сочетания гармонического и случайного сигналов показана на рисунке 4.

    

     В.2.2.2 Пик-фактор

    

     Пик-фактор характеризует распределение сигнала возбуждения как отношение максимального мгновенного значения сигнала к стандартному отклонению (см. также рисунок 2).

    

     Данный параметр может быть использован только в отношении задающего сигнала, генерируемого на выходе цифровой системы управления испытаниями, поскольку нелинейности всей системы, включающей в себя усилитель мощности, вибростенд, устройство крепления и испытуемый образец, могут исказить форму сигнала в проверочной точке. Влияние данных нелинейностей в широком диапазоне частот устранить, как правило, невозможно.

    

     В соответствии с настоящим стандартом значение пик-фактора должно быть не менее 2,5 (см. также 5.1.2). Если для задающего сигнала, распределенного по нормальному закону, уровень отсечки равен 2,5 стандартных отклонений, то приблизительно 99% данного сигнала попадет на усилитель мощности без искажений.

    

     В.2.3 Спады на низких и высоких частотах

    

     Настоящий стандарт предполагает, что спектральная плотность ускорения имеет прямоугольную форму (плоскую вершину) и все частотные составляющие расположены в диапазоне между частотами  и  (см. рисунок 1). Однако на практике возбуждаемый сигнал имеет спады спектральной плотности ускорения в областях низких и высоких частот. Чтобы среднеквадратичное значение оставалось как можно более близким к заданному, эти спады должны быть достаточно крутыми. Обычно крутизна спада в области низких частот равна 6 дБ/октава. Если значение спектральной плотности ускорения в точке  велико, а возможности испытательной установки по допустимым значениям перемещения ограничены, это может потребовать увеличения крутизны спада в области низких частот. Расчеты перемещения для случайного сигнала приведены в В.2.4.

    

     Как правило, динамический диапазон для двух соседних линий спектральной плотности ускорения при использовании цифровой системы управления испытаниями составляет 8 дБ. Для достижения большей крутизны спада может потребоваться увеличить разрешение по частоте (т.е. уменьшить значение ). Если это невыполнимо, а также в случае, когда увеличение крутизны спада не позволяет обеспечить снижение значений перемещения до допустимого уровня, следует рассмотреть возможность уменьшения нижней границы допуска для спектральной плотности ускорения на низких частотах.

    

     В области высоких частот проблем с обеспечением крутизны спада не существует. На частотах выше  крутизна спада должна составлять минус 24 дБ/октава и менее.

    

     В.2.4 Расчет среднеквадратичных значений ускорения, скорости и перемещения

    

     Среднеквадратичное значение ускорения, скорости или перемещения в эффективном диапазоне частот испытаний представляет собой квадратный корень из суммы средних квадратов значений этих величин в соответствующих поддиапазонах. Каждый из таких поддиапазонов определяется значением спектральной плотности ускорения , (м/с)/Гц, образующих его спектральных линий на частотах  и , Гц, шириной полосы частот между этими линиями () и крутизной спада , дБ/октава, спектральной плотности ускорения между соседними линиями. Ниже приведены формулы для расчета средних квадратов значений ускорения, скорости и перемещения.

    

     Средний квадрат ускорения , (м/с):

    

     для -3

    

;                                       (В.2)

    

     для -3

;                                         (В.3)

    

     для 0

    

.                                               (B.4)

    

     Средний квадрат скорости , (м/с):

    

     для 3

    

;                      (В.5)

    

     для 3

    

.                                      (В.6)

    

     Средний квадрат перемещения , мм:

    

     для 9:

    

;                  (B.7)

    

     для 9:

    

.                                 (В.8)

    

     Вышеприведенные формулы справедливы, если на графике спектральной плотности ускорения, где обе координаты даны в логарифмическом масштабе, форма спектральной плотности ускорения образована прямыми линиями. В этом случае спад  может быть определен по формуле

    

.                                                (В.9)

    

     Для сигнала, представляющего собой смесь (подстрочный индекс ) случайной (подстрочный индекс ) и гармонической (подстрочный индекс ) составляющих, среднеквадратичное значение (подстрочный индекс ) ускорения определяют по формуле

    

,                             (В.10)

    

     а пиковое значение (подстрочный индекс ) - по формуле

    

,                         (В.11)

    

где  - пик-фактор, обычно принимаемый равным трем.

    

     В.3 Процедура испытаний

    

     Целью испытаний на виброустойчивость является демонстрация способности изделия выдерживать воздействие вибрации и нормально функционировать при определенном уровне вибрационного возбуждения. Такое испытание должно продолжаться только в течение времени, достаточного для демонстрации образцом указанных способностей в заданном диапазоне частот. Длительность испытаний на вибропрочность, когда определяют способность образца противостоять кумулятивным эффектам вибрационного воздействия, таким как накопление усталости или механической деформации, должна быть достаточной для того, чтобы обеспечить необходимое число циклов изменений механического напряжения, даже если при этом длительность испытаний не будет соответствовать требованиям 6.1.4.

    

     При испытаниях на воздействие вибрации оборудование, которое в обычных условиях эксплуатации устанавливают на виброизоляторах, испытывают, как правило, вместе с виброизоляторами. Если испытать оборудование с его собственными виброизоляторами невозможно, например, если это оборудование смонтировано вместе с другим оборудованием с помощью общего крепления, допускается проводить испытания без виброизоляторов, но при другой степени жесткости условий испытаний, которая должна быть определена в соответствующем нормативном документе. Степень жесткости условий испытаний корректируют с учетом передаточных свойств виброизолирующей системы по каждому из направлений возбуждения вибрации. Если характеристики виброизоляторов неизвестны, следует руководствоваться рекомендациями В.4.1.

    

     Соответствующим нормативным документом может быть установлено требование проведения дополнительного испытания образца со снятыми или блокированными наружными виброизоляторами для демонстрации соответствия некоторым минимальным требованиям по вибропрочности. В этом случае в нормативном документе должна быть указана степень жесткости условий данного испытания.

    

     В.4 Оборудование, предназначенное для использования вместе с виброизоляторами

    

     В.4.1 Передаточные свойства виброизоляторов

    

     Изделия, которые при эксплуатации устанавливают на виброизоляторы, могут быть испытаны без них, в частности, когда динамические характеристики виброизоляторов нестабильны (например, изменяются с изменением температуры). В этом случае степень жесткости условий испытаний должна быть понижена с учетом диапазона изменений коэффициента передачи виброизоляторов. При коррекции степени жесткости условий испытаний учитывают нижнюю границу диапазона для каждого из направлений воздействия вибрации.

    

     Если данные о передаточных свойствах виброизоляторов отсутствуют, то степень жесткости условий испытаний должна быть предметом согласования между исполнителем и заказчиком.

    

     В.4.2 Влияние температуры

    

     В состав многих виброизоляторов входят материалы, свойства которых зависят от температуры. Если собственная резонансная частота образца на виброизоляторах попадает в диапазон частот испытаний, следует проявлять осторожность в определении времени выдержки, в течение которого к образцу будет приложено заданное возбуждение. В ряде случаев нецелесообразно подвергать образец длительному возбуждению и следует предусмотреть перерывы для его восстановления. Если известно реальное распределение времени возбуждения изделия на данной резонансной частоте в процессе эксплуатации, следует попытаться смоделировать его в процессе испытаний. Если же такое распределение неизвестно, то испытания следует проводить, ограничивая длительность периодов возбуждения, чтобы избегать чрезмерного нагрева образца.