5.17.2. Каналы измерения расходов воды и масла, а также точки измерения температуры, рекомендуется предусматривать еще при проектировании системы трубопроводов. Последующие встраивания и изменения могут приводить к загрязнению масла подшипников и контуров воды высокой чистоты.

5.17.3. Расходомеры с турбинкой или с сужением следует устанавливать только на время, необходимое для измерения, так как они быстро теряют точность из-за загрязнения или коррозии в контурах сырой воды. Чтобы иметь возможность их устанавливать и изымать без перерыва работы генератора, применяют обходные трубопроводы в соответствии с черт. 10, которые могут быть закрыты с обоих концов.

Это устройство должно оставлять свободными длины труб l между задвижками и расходомером следующих наименьших значений:

на входе S1 : l  10-кратного номинального диаметра;

на выходе S2 : l  5-кратного номинального диаметра.

Охлаждающая вода не должна проходить через ответвление в обход расходомера Q; для этого задвижки S3 и S4 в закрытом положении должны быть хорошо уплотнены и для проверки этого следует предусматривать между ними маленький кран S5.



Черт. 10


5.17.4. Расходомеры, включая примыкающие устройства для перемешивания струй, а также передатчики сигналов, усилители и измерительные приборы, если они имеются, должны быть поверены до испытания. Участки трубопроводов, находящиеся между точками измерения температуры для определения ее превышения, должны быть снабжены теплоизоляцией. Недостаточная теплоизоляция может ввести ошибки в обоих направлениях.

5.17.5. Если охладители находятся вне корпуса генератора, то можно выполнить калориметрическое измерение первичной охлаждающей среды, если воздушный тракт допускает установку аппаратуры, пригодной для правильного измерения. В противном случае воздухопроводы между генератором и охладителями должны быть снабжены надлежащей теплоизоляцией, чтобы обеспечить удовлетворительное измерение во вторичном контуре охлаждения. Воздухопроводы и корпус генератора должны быть уплотнены для устранения утечек воздуха.

5.18. Коммуникации и оборудование для калориметрических измерений в жидких охлаждающих средах

Полные потери, выносимые охлаждающей водой, получаются измерением расхода воды Q и полного превышения ее температуры .

Результат не зависит от распределения воды между параллельно включенными охладителями, от распределения газа и от распределения потерь между отдельными контурами газа. Необходима теплоизоляция трубопроводов воды между точками измерения температуры по п. 5.9.1.

При последовательном соединении охладителей, применяемом в случае охлаждения двумя средами, полные потери можно определить измерением полного расхода охлаждающей воды и полного превышения ее температуры. При этом необходимо обеспечить теплоизоляцию трубопроводов воды; если же это почему либо невозможно, то в случае последовательного соединения охладителей можно обойтись без нее, измеряя полный расход охлаждающей воды Q, но определяя частные превышения, температуры 1 и 2 или измеряя потери, выносимые водой в контуре охлаждения. Аналогичные соображения могут быть применены и при параллельном соединении охладителей.

В целях повышения точности измерения превышения температуры охлаждающей среды следует производить измерение как можно более высокого превышения температуры. Для этого следует в наибольшей возможной степени уменьшить расход охлаждающей среды, не выходя из допускаемых значений температуры.


Дроссельное устройство



Q расходомер; W температура нагретой охлаждающей жидкости; U — температура, до которой охлаждена частично ответвленная охлаждающая жидкость; K —температура смеси


Черт. 11


Это более применимо при достаточно холодной охлаждающей воде, чем в случае применения конденсата в качестве охлаждающей среды.

Если превышение температуры охлаждающей среды при калориметрических измерениях слишком мало и не может быть допущено изменение ее объемного расхода (например, масла в подшипниках), то в процессе измерения полезно выделить потери в ответвлении через которое течет только часть циркулирующей жидкости (черт. 11), и возвратить в охлаждающую среду эту часть при более низкой температуре. Это требует достаточно низкой температуры вторичной охлаждающей среды. Метод калориметрии в ответвлении позволяет получать более значительные разности температуры  и, следовательно, повысить точность измерения. Сужающее устройство позволяет получить надлежащее распределение между параллельными трубами.


(Измененная редакция, Изм. № 1)


6. ВЫЧИСЛЕНИЕ КПД ПРИ КОСВЕННОМ ОПРЕДЕЛЕНИИ


6.1. Машины постоянного тока

6.1.1. Механические потери Pмех должны быть определены опытным путем при том значении частоты вращения, для которого проводится определение КПД. Они могут быть определены методами: динамометра, тарированного двигателя, ненагруженного двигателя (экстраполяцией измеряемых потерь на нулевое значение приложенного напряжения), самоторможения и калориметрическим.

6.1.2. Потери в стали и добавочные потери холостого хода Pст условно принимаются независящими от нагрузки и равными потерям при холостом ходе с теми значениями напряжения и частоты, для которых определяют КПД.

Для машин очень низкого напряжения, если это установлено в технических условиях на электрические машины конкретных видов, эти потери допускается определять при напряжении, увеличенном для генератора и уменьшенном для двигателя на падение напряжения в цепи якоря для рассматриваемого тока.


(Измененная редакция, Изм. № 1)


6.1.3. Основные потери в цепях рабочих обмоток Pм определяются по п. 2.3.

6.1.4. Потери на возбуждение Pв определяются по п. 2.4 по току возбуждения, соответствующему рассматриваемому режиму работы. Если этот ток не может быть получен из опыта нагрузки, то при номинальном режиме работы его следует принимать по ГОСТ 10159.

6.1.5. Электрические потери в щетках Pщ определяются по п. 2.5.

6.1.6. Добавочные потери при нагрузке Pд при номинальном режиме работы, если нет иных указаний, принимаются равными:

1 % номинальной подводимой мощности двигателя или номинальной отдаваемой мощности генератора для некомпенсированных машин;

0,5 % номинальной подводимой мощности двигателя или номинальной отдаваемой мощности генератора для компенсированных машин.

Для машин с неизменной частотой вращения номинальную подводимую или отдаваемую мощность вычисляют как произведение наибольшего номинального напряжения на наибольший номинальный ток.

Для двигателей с частотой вращения, регулируемой изменением приложенного напряжения, номинальную подводимую мощность вычисляют для каждой частоты вращения как произведение напряжения, соответствующего этой частоте вращения, на наибольший номинальный ток.

Для двигателей с частотой вращения, регулируемой изменением возбуждения, номинальную подводимую мощность вычисляют как произведение номинального напряжения на наибольший номинальный ток.

Для генераторов с регулируемой частотой вращения, у которых напряжение поддерживается неизменным за счет изменения возбуждения, номинальную отдаваемую мощность вычисляют как произведение номинального напряжения на наибольший номинальный ток.

Значения добавочных потерь при частоте вращения, соответствующей полному полю, должны быть такими, как указано выше; значения добавочных потерь при других частотах вращения должны вычисляться умножением на коэффициенты табл. 4. Для отношений частот вращения, отличающихся от указанных в табл. 4, соответствующие коэффициенты определяются интерполяцией.


Таблица 4


Отношение фактической частоты вращения к наименьшей номинальной для продолжительного режима работы

Коэффициент

1,5:1

1,4

2:1

1,7

3:1

2,5

4:1

3,2


6.2. Многофазные асинхронные машины

6.2.1. Механические потери Pмех должны быть определены опытным путем при номинальной частоте. Они могут быть определены методом ненагруженного двигателя по п. 3.3.3, методом динамометра или тарированного двигателя по п. 3.3.2 или калориметрическим методом в соответствии с разд. 5. В двигателях с постоянно прилегающими щетками последние должны быть наложены на кольца в полном количестве.

Для двигателей с повышенным скольжением механические потери определяются по согласованию между изготовителем и потребителем.

6.2.2. Потери в стали и добавочные потери холостого хода Pст должны быть определены опытным путем при номинальных значениях частоты и напряжения. Они могут быть определены методом незагруженного двигателя по п. 3.3.3 или калориметрическим методом в соответствии с разд. 5.

Для двигателей с изменением частоты вращения посредством переключения обмотки статора на различные числа пар полюсов механические потери и сумму потерь в стали и добавочных потерь холостого хода надлежит определять для каждого числа пар полюсов отдельно.


(Измененная редакция. Изм. № 2)


6.2.3. Основные потери в рабочей цепи

Потери в обмотке статора определяются по п. 2.3 как произведение квадрата фазного тока I1 при данном режиме работы на сопротивление одной фазы обмотки R1, приведенное к расчетной рабочей температуре по п. 1.4, и на число фаз ml

, (31)

Потери в обмотке фазного ротора Рм2 определяются подобно предыдущим как произведение квадрата фазного тока ротора I2 при данном режиме работы на сопротивление одной фазы обмотки R2, приведенное к расчетной рабочей температуре, и на число фаз m2

. (32)

Примечание. Числа фаз обмоток статора и ротора могут быть различны, например, двухфазная обмотка ротора при трехфазной обмотке статора или наоборот.


Потери в обмотке короткозамкнутого ротора Рм2 определяются как произведение электромагнитной мощности Рэм, передаваемой магнитным полем со статора на ротор, на скольжение s, выраженное в относительных единицах

. (33)

Электромагнитная мощность Pэм вычисляется как разность между подводимой мощностью Р1 и потерями в стали и добавочными потерями при холостом ходе Pст и основными потерями в обмотке статора Pм1

. (34)

Если испытание двигателя под нагрузкой не может быть произведено ни при номинальном, ни при пониженном напряжении, то ток статора, коэффициент мощности и скольжение могут быть определены по круговой диаграмме, установленной в ГОСТ 7217.

При определении основных потерь в рабочей цепи машин переменного тока, питаемых от преобразователей, при данной нагрузке за ток статора принимается среднеквадратическое значение тока статора при напряжении, равном первой гармонической питающего напряжения.


(Измененная редакция, Изм. № 1, 2)


6.2.4. Электрические потери в щетках Pщ определяются только в случае двигателя с фазным ротором и постоянно прилегающими щетками и вычисляются как произведение падения напряжения, принимаемого в соответствии с материалом щеток по п. 2.5, на ток в каждом кольце и на число колец.

Примечание. В случае ротора с двухфазной обмоткой следует учесть, что ток в кольце, к которому присоединены обе фазы, больше тока в двух других кольцах.


6.2.5. Добавочные потери при нагрузке Pд определяются опытным путем по ГОСТ 7217. При необходимости, по согласованию добавочные потери принимаются при номинальном режиме работы равными 0,5 % от подводимой к двигателю мощности или 0,5 % от отдаваемой генератором мощности. При нагрузке, отличной от номинальной, они пересчитываются по п. 2.6.


(Измененная редакция, Изм. № 2)


6.2.6. Дополнительные потери при нагрузке Pдоп определяются по п. 2.7, а также по дополнительным потерям, вычисленным по данным опыта ненагруженного двигателя, питаемого от преобразователя, и пересчитанным пропорционально квадрату тока нагрузки. При необходимости, по согласованию с заказчиком дополнительные потери принимаются при номинальном режиме работы равными 1 % от подводимой к двигателю мощности при коэффициенте искажения синусоидальности кривой питающего напряжения не более 10 %. При нагрузке, отличной от номинальной, их пересчитывают по п. 2.7.


(Введен дополнительно, Изм. № 2)


6.3. Многофазные синхронные машины

6.3.1. Механические потери Pмех должны быть определены опытным путем при номинальной частоте. Они могут быть определены методом динамометра и тарированного двигателя по п. 3.3.2, методом ненагруженного двигателя по п. 3.3.3, методом самоторможения в соответствии с разд. 4 или калориметрическим методом в соответствии с разд. 5.

6.3.2. Потери в стали и добавочные потери холостого хода Рст должны быть определены опытным путем при номинальных значениях частоты и напряжения и условно принимаются не зависящими от нагрузки. Они могут быть определены теми же методами, что и механические потери, по п. 6.3.1.

6.3.3. Сумма основных потерь в цепях рабочих обмоток и добавочных потерь при нагрузке (потери короткого замыкания) Pк должна быть определена опытным путем при номинальных значениях частоты и тока короткого замыкания и условно принимается не зависящей от температуры обмотки. Она может быть определена методами динамометра и тарированного двигателя по п. 3.3.2, самоторможения в соответствии с разд. 6 и калориметрическим согласно разд. 5. При нагрузках, отличных от номинальной, данные потери пересчитываются пропорционально отношению квадратов токов.