А4. Степени жесткости испытания (разд.2 и 5)


Там, где возможно, степени жесткости испытания и форма ударного импульса, воздействующие на образец, должны определяться внешними условиями, которым образец подвергается во время транспортирования или эксплуатации, либо они определяются требованием конструкции, если целью испытания является оценка конструктивной прочности.


Часто условия транспортирования могут оказаться более жесткими, чем эксплуатационные, в этом случае степень жесткости испытания должна соответствовать условиям транспортирования. Казалось бы, что в этом случае образец должен испытываться только по степени жесткости, соответствующей условиям транспортирования, но с другой стороны, может потребоваться проверка функционирования образца при воздействии внешних условий эксплуатации. В таком случае потребуется проведение испытаний на удар как на условия эксплуатации, так и транспортирования с измерением значений определенных параметров после проведения испытаний на условия транспортирования и контролем функционирования образца в процессе проведения испытаний на воздействие условий эксплуатации.


При назначении степени жесткости испытания следует обратить внимание на обеспечение достаточного запаса между степенью жесткости испытания и условиями реальной окружающей среды.


В том случае, когда реальные эксплуатационные или транспортные условия не известны, необходимую степень жесткости следует выбирать из табл.1. Кроме того, необходимо сделать ссылку на разд.В3.


А5. Допуски


Метод испытания, приведенный в настоящем стандарте, имеет высокую воспроизводимость, когда выполняются требования к допускам в отношении формы импульса, изменения скорости и поперечного движения.


Однако, имеются некоторые исключения в отношении требований к допускам; они, в основном, применимы к образцам с большой реактивной нагрузкой, масса и динамическая реакция которых могут повлиять на характеристики ударной установки таким образом, что требования к допускам выполнить невозможно. В этом случае в соответствующей НТД должны быть указаны большие значения допусков или должно быть указано, что полученные результаты должны быть зарегистрированы в протоколе испытаний (см. пп.4.1.1, 4.1.2 и 4.1.3).


При испытании образцов с большой реактивной нагрузкой может оказаться необходимым проведение предварительной выдержки для проверки характеристик нагруженной ударной установки. В случае сложных образцов, когда имеется в наличии один или ограниченное количество образцов для испытания, предварительные испытания могут привести к ужесточению испытания и возможному нехарактерному кумулятивному разрушению. В этих случаях, там где возможно, рекомендуется провести предварительную проверку, используя характерную модель (например образец, вышедший из строя) или, если такой образец отсутствует, может быть использована пространственная модель такой же массы и имеющая такое же расположение центра тяжести. Однако следует заметить, что пространственная модель может не иметь ту же динамическую реакцию, что и реальная модель.


Частотная характеристика всей измерительной системы, включая акселерометр, является важным фактором в получении требуемой формы импульса и степени жесткости; она должна находиться в пределах допусков, указанных на рис.4. В том случае когда необходимо использовать фильтр низких частот для уменьшения влияния наложенных колебаний, вызванных наличием в акселерометре высокочастотных резонансов, необходимо учесть амплитудные и фазовые характеристики измерительной системы для того, чтобы избежать искажения воспроизводимой формы (см. п.4.2).


Для ударов длительностью, равной или меньше 0,5 мс, значения частот и , указанные на рис.4, могут быть без необходимости слишком высокими. В этом случае в соответствующей НТД должны быть указаны другие приемлемые значения (см. п.4.2).


А6. Изменение скорости (п.4.1.2)


Для всех форм импульса необходимо указать действительное изменение скорости. Определение изменения скорости можно произвести одним из нижеследующих способов:


измерение скорости соударения для ударных импульсов, не включая отскок;


измерением высоты падения и отскока, когда используется установка со свободным падением;


путем интегрирования кривой ускорение-время.


Если рекомендуется способ интегрирования кривой, то реальное изменение скорости импульса, если не оговорено особо, определяется посредством интегрирования ударного импульса от 0,4 до начала импульса до 0,1 после окончания воздействия импульса, где - длительность номинального импульса. Определение изменения скорости импульса с помощью метода электронного интегрирования может быть достаточно трудным и может потребовать применения сложной установки. Поэтому необходимо оценить стоимость используемого оборудования, прежде чем выбрать этот метод.


Одна из целей задания изменения скорости и связанной с ней зоной допусков - это стремление лабораторий по испытаниям генерировать импульс, эквивалентный номинальному импульсу, т.е. основному импульсу в пределах допусков, указанных на рис.1, 2, 3 настоящего стандарта. Таким образом поддерживается воспроизводимость испытания.


Другая цель задания изменения скорости связана со спектрами ударов (см. разд.В3).


А7. Выдержка (п.8.1)


Одним из основных требований испытания является воздействие трех ударов в каждом из шести направлений. Когда нет необходимости проводить испытание в шести направлениях, например, вследствие симметрии образца, или когда точно известно, что направление воздействия ударов меньше, в соответствующей НТД может быть указано другое количество направлений воздействия, но количество ударов в каждом направлении не должно быть изменено. При этом необходимо учесть такие факторы, как количество имеющихся образцов для испытания, их сложность, стоимость и ориентацию изделия при эксплуатации.


Так как целью испытания не является разрушение образцов, то в том случае когда имеется в наличии достаточное количество образцов, они могут быть ориентированы таким образом, чтобы требования соответствующей НТД в отношении направлений воздействия ударов по осям образца могли быть выполнены посредством воздействия трех ударов только в одном направлении.


В зависимости от количества однотипных образцов и средств крепления (особенно типа "элемент") образцы могут быть ориентированы таким образом, что требования соответствующей НТД будут выполнены при минимальном количестве воздействующих ударов. Например, если имеется 6 образцов, то при креплении они могут быть сориентированы по 6 различным направлениям, так чтобы требования соответствующей НТД были выполнены воздействием ударов только в одном направлении. Если же имеются от 3 до 5 образцов, то удары необходимо приложить к закрепленным образцам в двух направлениях. Подобным образом для двух образцов потребуется 3 направления воздействия удара, а для единичного образца - все 6 направлений воздействия.


В случае, когда имеется только один образец, должно быть приложено 18 ударов, однако испытание при этом примет несколько непредставительный характер. Важно, чтобы разработчик соответствующей НТД тщательно продумал это положение.




ПРИЛОЖЕНИЕ В

Рекомендуемое

УДАРНЫЙ СПЕКТР И ДРУГИЕ ХАРАКТЕРИСТИКИ ФОРМ ИМПУЛЬСА

Введение


Для использования современных технических средств при испытании на удар и обеспечения возможности дальнейшего усовершенствования ударных установок испытание Еа устанавливает одну из трех возможных форм ударного импульса (с установленной степенью жесткости), который воздействует на образец через его точки крепления и не связывает испытание с конкретными типами ударных установок. Выбор формы импульса и степени жесткости должен осуществляться с учетом конструкции образца.


Все методы можно считать приемлемыми с точки зрения воспроизводимости определенных условий испытания и для имитации реальных ударных воздействий. Для обеспечения испытаний на воздействие удара, которые будут воспроизводимы и практически достоверны, необходимо при создании методики испытания на воздействие удара принять во внимание основные понятия, которые приводятся ниже.


В1. Понятие об ударном спектре


Ударные спектры ускорения различных форм ударных импульсов рассматриваются при разработке методики испытания на удар, так как они дают во многих практических случаях полную информацию о потенциальном повреждении, которое может возникнуть при испытании на удар.


Ударный спектр ускорения можно рассматривать как максимальный отклик ускорения на данное ударное возбуждение упругих недемпфированных систем со сосредоточенными массами в виде функции собственных частот этих систем. Максимальное ускорение колебательных систем определяет в большинстве случаев максимальное механическое напряжение в точках крепления и максимальное относительное смещение их упругих элементов.


Допустим, что корпус, изображенный на рис.8, подвергается ударному воздействию с определенной формой импульса, т.е. зависимостью ускорения от времени , где - смещение относительно фиксированной системы координат. Откликом системы является колебание с различным нарастанием ускорения во времени для масс в зависимости от их резонансных частот ( и т.д.).


На рис.9а в качестве примера воздействующего импульса представлен импульс с величиной пикового ускорения и длительностью , а на рис.9б представлены соответствующие отклики по ускорению и т.д. для резонансных частот.


Ударные спектры (рис.9с) получаются в результате откликов системы, имеющей бесконечное число резонансных частот, и представляются в виде графиков значений предельных (максимальных и минимальных) откликов ускорения на рис.9б как функции резонансных частот для недемпфированной линейной упругой системы.


Положительный начальный ударный спектр на рис.9с представляет собой огибающую максимальных значений ускорений отклика, возникающего в период действия импульса в том же самом направлении, что и возбуждающий импульс на рис.9б.


Положительный остаточный ударный спектр представляет собой огибающую максимальных значений ускорения того же самого отклика, возникающего после окончания импульса и совпадающего с ним по направлению: .


Отрицательный начальный ударный спектр представляет собой огибающую максимальных значений ускорения отклика, возникающего в период действия импульса в направлении, обратном действию этого импульса: .


Отрицательный остаточный ударный спектр представляет собой огибающую максимальных значений ускорения отклика, возникающего после окончания действия импульса в направлении, обратном действию этого импульса: .


Все четыре спектра представлены на рис.9с, где, кроме того, отмечены резонансные частоты корпуса.


Так как затухание импульса предполагается равным нулю, отклик после воздействия импульса представляет собой устойчивое синусоидальное колебание вокруг нулевого ускорения. Таким образом, положительные и отрицательные остаточные спектры удара являются зеркальным отражением друг друга относительно частотной оси при изображении ударного спектра ускорения.


Отрицательный начальный спектр всегда меньше по величине, чем положительный для тех форм импульса, о которых идет речь в данном документе. Поэтому методика испытания на удар требует проведения испытаний в обоих направлениях вдоль каждой оси. Максимальное ускорение для составных частей данной системы определяется затем положительным начальным спектром в обоих направлениях. Отрицательный начальный спектр поэтому не упоминается далее по тексту настоящего приложения.


Огибающая положительного начального спектра и огибающая остаточного спектра показывают максимальное ускорение отклика масс, когда бы оно не возникло. Она называется максимальным откликом спектра удара. Для того чтобы представить более полные сведения, начальный и остаточный спектры изображены отдельно. Часто бывает затруднительно установить точную длительность и в этом случае практически невозможно определить эти спектры в отдельности.


Спектры удара могут быть легко нормализованы по максимальному значению амплитуды и длительности для одинаковых форм ударных импульсов. Если вместо и выбирают координаты шкалы и , то спектры удара будут действительны для любых ударов такой же формы импульса. Спектры, представленные на рис.5, 6, 7, 11 и 12, имеют следовательно координаты шкалы: как функцию и как функцию для частного примера длительности и пикового ускорения.


В2. Использование ударных спектров первого порядка на практике


В элементах и аппаратуре внутренние детали или части обычно образуют более сложную систему, чем недемпфированные системы; например, соединенные последовательно системы с многими степенями свободы с демпфированием, как показано на рис.10. В этом случае колебания, вызванные воздействием удара в одной внешней системе, могут привести к повреждению внутренней системы в результате возникновения связанных резонансных явлений. Эти явления могут быть описаны системой спектров удара высшего порядка, действительных для данных комбинаций резонансных частот упругих подсистем.


Если резонансные частоты последовательно соединенных систем значительно отличаются друг от друга, то спектр удара первого порядка дает приемлемую возможность сравнения потенциальной разрушающей способности ударов различных форм импульса.


Наивысшее ускорение внутренних масс достигается при возбуждении резонансов во время воздействия импульса. В этом случае возникающие колебания ускорения накладываются на ускорение самого импульса. Следовательно, как видно из разд.В3, наибольшая опасность повреждения в этой связи будет при наименьшей длительности нарастания импульса.