Выполненные исследования позволили выделить три типа ускорений при смене полос движения автомобилями для обоих видов маневров: положительное, отрицательное и равное нулю. Характер ускорения автомобиля обуславливается состоянием транспортного потока и скоростью автомобиля, совершающего маневр. Так, для смены полосы с первой на вторую положительное ускорение необходимо при средней скорости движения автомобиля, равной V = 47,5 км/ч, отрицательное при V = 61,2 км/ч и равное нулю при V = 55,3 км/ч, что подтверждает ранее высказанное предположение.

Рис. 3. Распределение скоростей движения автомобилей при смене полосы движения со второй на первую:

1 - фактическое; 2 - теоретическое

Результаты, полученные при анализе режимов движения автомобилей при маневрах на четырехполосных городских магистралях, могут быть использованы для дальнейшего изучения режимов движения на таких дорогах, а также при имитационном моделировании транспортных потоков на ЭВМ.

Литература

1. Лобанов Е.М. Проектирование дорог и организация движения с учетом психофизиологии водителя. - М.: Транспорт, 1980. - 311 с.

2. Сильянов В.В. Теория транспортных потоков в проектировании дорог и организации движения. - М.: Транспорт, 1977. - 303 с.

ИССЛЕДОВАНИЕ ИЗМЕНЕНИЯ ОБЪЕМОВ ЗЕМЛЯНЫХ РАБОТ В ЗАВИСИМОСТИ ОТ КОЭФФИЦИЕНТА РАЗВИТИЯ ТРАССЫ

И.А. Осиновская

Сибирский автомобильно-дорожный институт

Общеизвестно, что в зависимости от коэффициента развития трассы изменяются строительные затраты и текущие транспортно-эксплуатационные расходы. При этом, если часть строительных затрат Кдп (устройство дорожной одежды, обустройство дороги и др.), а также текущие расходы для данной технической категории изменяются пропорционально длине трассы, то затраты на возведение земляного полотна и на устройство искусственных сооружений Кзи зависят от параметров рельефа местности и поэтому для разных участков трассы они будут различными. Следовательно, объем работ на возведение земляного полотна для каждой технической категории зависит от коэффициента развития трассы Ки и параметра рельефа местности , т.е.

.                                                                 (1)

Для оценки зависимости (1) сделана выборка проектных данных и выполнено опытное проектирование локальных участков трассы на графических моделях местности. Выборка и опытное проектирование выполнены для четырех типов рельефа местности (слабохолмистый, средне- и сильнопересеченный, гористый) с предварительным; вычислением их параметра. Общее количество опытных данных составило 114, в том числе для участков дорог I технической категории - 24, II - 32, III - 34 и для IV - 24. При этом коэффициент развития трассы изменялся в зависимости от рельефа местности в пределах KL = 1,01 - 1,12 для I, КL = 1,01 - 1,16 для II, KL = 1,08 - 1,20 для III и KL = 1,04 - 1,31 для IV технических категорий [1].

Затраты на устройство искусственных сооружений приняты согласно статистическим данным и показателям их удельного веса в общей стоимости строительства в зависимости от технической категории дороги и рельефа местности [2].

Для количественной оценки связи  произведен анализ парных и множественной корреляционных зависимостей.

Оценка парных корреляционных зависимостей выполнена для каждой технической категории дорог раздельно. В результате этого получены количественные связи между объемом земляных работ и искомыми параметрами рельефа местности и удлинения трассы.

На рис. 1 приведена зависимость , из которой следует, что с увеличением значений параметра рельефа, т.е. пересеченности местности, объем земляных работ на 1 км дороги увеличивается.

Обработка проектных данных позволила получить количественную расчетную связь, представленную обобщенной формулой

Wз = а + вg + сg2,                                                       (2)

где а, в, с - коэффициенты уравнения, значения которых приведены в табл. 1.

Показатели корреляционных связей, характеризуемые величинами коэффициентов корреляции в пределах τ = 0,75 - 0,92 и приведенные графические зависимости на рис. 1 свидетельствуют о наличии достаточно тесной связи между объемами земляных работ и параметром рельефа местности.

Таблица 1

Техническая категория дороги

Коэффициенты уравнения

а

в

с

I

26,068

1,005

- 1,55·10-3

II

22,38

0,149

1,58·10-3

III

11,476

0,325

8,556·10-5

IV

12,972

- 1,796·10-2

1,82·10-3

Анализ экспериментальных данных позволяет установить области распределения объемов земляных работ в зависимости от технической категории дороги, характеристики рельефа местности и принятого коэффициента развития. На рис. 2 приведены зависимости .

Рис. 1. Зависимость  для I, II, III, IV - технических категорий дороги

Рис. 2. Оценка влияния технической категории дорог на величину объемов земляных работ

Для получения обобщенной характеристики связи объемов земляных работ с параметрами рельефа и трассы и возможности ее использования в аналитических расчетах получено уравнение регрессии .

Решение задачи осуществлялось на основе программы, составленной для ЭВМ ЕС-1020.

В результате получено следующее уравнение в общем виде:

W3 = a0 + a1·KL + a2,                                                         (3)

где а0, а1, а2 - коэффициенты уравнения регрессии, значения которых приведены в табл. 2.

Таблица 2

Техническая категория дороги

Значения коэффициентов регрессии

а0

а1

а2

I

14,41

6,66

0,82

II

- 152,19

173,33

0,22

III

- 325,0

320,0

0,06

IV

- 30,08

31,11

0,26

Анализ полученных уравнений регрессии по значениям коэффициентов множественной корреляции Rr, которые отражают тесноту связи между исследуемыми характеристиками, показал, что Rr = 0,91 - 0,98 [3].

Результаты выполненного исследования позволяют разработать рекомендации по назначению рациональных значений параметров участка трассы в зависимости от рельефа местности и технической категории дороги, что является предметом дальнейших исследований.

Литература

1. Хомяк Я.В. Проектирование сетей автомобильных дорог. - М.: Транспорт, 1983. - 207 с.

2. Нормативы удельных капитальных вложений в строительстве автомобильных дорог общего пользования на период 1975 - 1980 гг. - М.: Гипродорнии, 1982.

3. Гмурман В.Е. Теория вероятностей и математическая статистика. - М.: Высшая школа, 1972. - 412 с.

ОБОСНОВАНИЕ МЕТОДИКИ И КРИТЕРИЕВ ТРАССИРОВАНИЯ ДОРОГ НА ЦИФРОВОЙ МОДЕЛИ МЕСТНОСТИ

Ю.Б. Антонов, Т.Ю. Стремина

Сибирский автомобильно-дорожный институт

Ранее в [1, 2] предложено, что оптимизация трассы дороги возможна эвристическими методами, моделирующими алгоритм принятия решения человеком. Такой алгоритм можно представить шестью процедурами: 1 - принятие к рассмотрению множества вариантов плана трассы; 2 - предварительная оценка сложности рельефа каждого варианта. Методика оценки приведена в работе [3]. По этой методике рельеф характеризуется дисперсией отметок и показателями частоты колебания отметок mlnw и дисперсией частоты ; 3 - отбраковка вариантов c труднопреодолимыми формами (Т-формами) рельефа с целью сужения области поиска; 4 - повышение жесткости критерия и повторная отбраковка вариантов. Сужение области поиска до 1 - 2 вариантов; 5 - оптимизация параметров дороги по критерию строительных (а по мере разработки программы - по критерию суммарных) затрат для оставшихся вариантов; 6 - принятие окончательного варианта дороги.

Такой алгоритм имитирует процесс поэтапного приближения к лучшему варианту и экономит машинное время, так как по мере ужесточения критерия (соответственно и увеличения времени для его вычисления) область поиска сужается.

Первая процедура выполняется исходя из следующих предположений: область поиска должна быть достаточно широкой и содержать полосу местности, по которой в дальнейшем ляжет оптимальный вариант; планы трассы соответствуют требованиям зрительной ясности и плавности, гладкости линии; план оптимальной трассы может быть получен из отдельных участков нескольких предварительно принятых планов.

Большое количество вариантов заставляет найти математически простую, с малыми затратами машинного времени, но надежную процедуру их отбраковки. Вид такой процедуры зависит от критерия отбраковки. Здесь предлагается принять критерием названные выше характеристики рельефа местности по трассе. Тогда методика трассирования и отбраковки может быть основана на следующем принципе: при равных гидрогеологических условиях оптимальная трасса проходит по полосе местности с минимальной дисперсией отметок и частотой их колебания при более широком спектре. Только на такой полосе можно получить наименьший объем земляных работ и обеспечить наибольшую оптимальную скорость движения транспортного потока, следовательно, и минимум суммарных затрат.

Этот очевидный принцип трассирования визуально по плану в горизонталях не является само собой разумеющимся для ЭВМ - она не представляет рельеф умозрительно. Нужен алгоритм трассирования. Для подтверждения принципа проводились эксперименты, пример которых можно увидеть на рис. 1 ... 3.

На участке местности с пересеченным рельефом произвольно принимают 6 трасс (см. рис. 1), продольные профили земли (см. рис. 2).

Рис. 1 Планы трасс на экспериментальном участке

10...70 номера сечений местности, в которых определялись отметки земли

Рис. 2. Продольные профили земли по трассам 1...6

Между сечениями 17…34 1 и 2-я трассы имеют Т-формы. Эти участки бракуются. Легкопреодолеваемые формы (Л-формы) между этими сечениями имеют 3 и 4-я трассы. Следовательно, полоса оптимальной местности где-то здесь. Между сечениями 34...37 и 54 и 76 варьирование трассы влево - вправо мало изменяет перепад отметок, поэтому оптимальная полоса - кратчайшая. Итак, предварительным трассированием можно определить возможное сочетание участков земли с Л-формами рельефа. Надо отметить, что отдельный участок земли не представляет собой Т- или Л-форму. Только их сочетание вдоль трассы определит - какой «вклад» в дисперсию отметок рельефа «внесет» каждый участок. Замечено, что местность можно разбить на отдельные полосы, в пределах которой изменение плана трассы не улучшает ее рельеф [1]. Поэтому оптимальную полосу местности можно составить участками, каждый из которых в сочетании с соседними имел бы Л-форму. В итоге полученная полоса местности будет иметь минимальную дисперсию отметок.

Например, такая полоса получилась бы из участков трассы 1 между сечениями 1...8 и 40...76, трассы 2 между 8...15 и 30...46, трассы 4 между 15...30 (см. рис. 1 и 2).

Для окончательного выбора оптимальной полосы из отрезков трасс 1...6 составлены новые трассы: а - из участков 1, 1, 1, 1; б - 1, 2, 1, 2, 1; в - 1, 2, 6, 1; г - 1, 2, 3, 2, 6, 1; д - 1, 2, 3, 2, 1; е - 1, 2, 4, 2, 5, 1; ж - 1, 2, 4, 6 (см. рис. 1 и 2). Для них определены параметры рельефа по программе «спектр», оптимальная скорость, и запроектированы продольные профили дороги. Ограничения и нормы проектирования одинаковы.

Проекты составлены по программе Н074 Воронежского филиала Гипродорнии. Спектры дисперсий рельефа по трассам приведены на рис. 3.

В табл. 1 отражены проектные данные продольных профилей дороги.

Проектные данные профилей дороги

Параметр

Величины для профилей дороги

а

б

в

г

д

е

ж

Оптимальная скорость

54,3

55,5

56

55,6

55,6

55,6

56,1

Объем насыпи, тыс. м3

341

262

275

261

261

252

245

Объем выемки, тыс. м3

625

457

523

435

435

402

372

Из данных рис. 3 и таблицы видно, что оптимальная полоса местности соответствует трассе ж.

Рис. 3. Эмпирические спектры дисперсий профилей земли а, б, в, г, д, е, ж

Об этом можно судить по всем трем критериям: показателям рельефа, оптимальной скорости, объему земляных работ. Самый простой из них первый: вычисление дисперсии и параметров спектра одной трассы занимает в 60...100 раз времени меньше, нежели проектирование продольного профиля и подсчет объема работ. Поэтому показателей рельефа достаточно для выработки решения типа «хуже - лучше» относительно планов трасс и их отбраковки. Следовательно, первые три процедуры алгоритма трассирования должны быть основаны на количественной оценке рельефа.

Из трех параметров рельефа дисперсия отметок - определяющий. Вариант с большей дисперсией может быть отбракован без анализа его спектра.

Алгоритм, реализующий принятый принцип трассирования, обозначен на рис. 4, в нем Д, т, σ параметры оптимальной полосы местности. Смысл третьего блока алгоритма состоит в поиске участков трассы, отметки которых вносят наибольший вклад в дисперсию и их обход. Трасса развивается в плане. Если это развитие не уменьшает дисперсию - принимается кратчайший путь и поиск вариантов заканчивается. В блоках 4 ... 10 определяются параметры рельефа трасс и их браковка. В блоке 10 варианты, принимаются к дальнейшему анализу.