Методические рекомендации по зимнему содержанию автомобильных дорог в Казахстане


Рис. 22. Последовательность, место и формы отложений снега у решетчатого препятствия с просветностью 35 - 50 %

Последовательность, место и форма отложений снега у решетчатого препятствия зависят от его просветности. На рис. 22 приведены зарисовки последовательности, места и формы отложений снега у решетчатого препятствия с наиболее часто встречающейся просветностью 35 - 50 %. При просветности до 25 - 30 % работа решетчатого препятствия мало отличается от работы сплошного препятствия, и отложения снега в этом случае происходят почти так же, как и у сплошного препятствия. При просветности 60 - 75 % первоначальное отложение за препятствием принимает вытянутую форму, но конечный результат получается таким же, как и при просветности 35 - 50 %. При просветности более 75 - 80 % снижение скорости ветроснегового потока настолько мало, что из пего у препятствия выпадает незначительное количество наиболее крупных частиц снега, а остальная часть уносится дальше, за пределы воздействия препятствия.

6. СНЕГОЗАНОСИМОСТЬ ДОРОГ

6.1. Определение понятия «снегозаносимость дорог»

Перед рассмотрением вопроса о снегозаносимости различных участков дорог оказалось необходимым дать определение этому понятию. В имеющейся литературе и официальных документах это понятие нередко толкуется неправильно. Например, в некоторых даже официальных документах снегозаносимость дороги принимается равнозначной объемам приносимого к дороге снега.

Ошибочность такой трактовки очень легко установить. Всеми исследователями принимается, что если дорога проходит насыпями высотой более 4 м, то она незаносима при любых объемах приносимого к дороге снега. И, наоборот, если дорога проходит выемкой с полуторными откосами и глубиною до 1 м, то она заносима при любых объемах приносимого к дороге снега. Следовательно, снегозаносимость какого-либо участка дороги нельзя определять только по объему приносимого к этому участку дороги снега - на снегозаносимость оказывают влияние и другие факторы.

Под снегозаносимостью какого-либо участка дороги следует понимать возможность или невозможность отложений приносимого ветром с окружающей местности снега на проезжей части и обочинах при отсутствии на последних или вблизи них препятствий, могущих задержать приносимый снег (снежные валы, нескошенная трава, кустарник, штабеля материалов и т.п.).

Необходимо отметить также, что возможность снегозаносимости проезжей части и обочин на насыпях высотою ниже 4 м, а также выемок глубиною более 1 м будет различной и в первом случае зависит от возможной высоты снегового покрова и объема приносимого снега, а во втором случае - от глубины выемки, пологости ее откосов и объема приносимого снега.

6.2. Снегозаносимость выемок

Снегозаносимыми являются те выемки, в которых отложения переносимого снега происходят не только на подветренном откосе и над подветренным кюветом, но и на подветренной обочине и на проезжей части дорог.

В выемках с любой пологостью откосов приносимый снег вначале откладывается на подветренном откосе, а затем, постепенно продвигаясь, заполняет проезжую часть и наветренный откос, т.е. заполняет всю выемку. Следовательно, снегозаносимой будет такая выемка, где переносимый снег может заполнить подветренную обочину и проезжую часть. Незаносимой же будет выемка такой глубины и при таком объеме приносимого снега, когда отложения этого снега будут занимать только подветренный откос и подветренный кювет, а на обочинах и на проезжей части отложений переносимого снега не будет.

Следовательно, незаносимой будет та выемка, у которой

Qок ≥ Qп + Qс,                                                            (5)

где Qок - объем снега, возможный к отложению на откосе и над подветренным кюветом, м3/м;

Qп - возможный объем приносимого снега в течение зимнего периода, м3/м;

Qс - возможный объем снега на откосе и в кювете при снегопадах, м3/м.

Отсюда вытекает, что незаносимой может быть выемка, если ее глубина такая, что на подветренном откосе и над подветренным кюветом может отложиться весь приносимый к выемке снег с учетом снега и от спокойных снегопадов.

Необходимо, однако, отметить, как указано в ряде источников, что незаносимость снегом выемок может быть обеспечена или принятием пологих откосов выемок (раскрытие выемки, см. рис. 23) или разделкой выемок под насыпь (см. рис. 23), обеспечивающих необходимую обтекаемость выемок. Раскрытие выемок или разделку их под насыпь эти источники ставят в зависимость только от одного фактора - от глубины выемок. В действительности же рациональность данного мероприятия зависит от ряда факторов и прежде всего от объема приносимого к данному участку дороги снега. В связи с этим автором еще в 1961 г. было рекомендовано учитывать и этот фактор, и раскрытие мелких выемок или разделку их под насыпь для целей снегоборьбы производить только в том случае, если к данному участку дороги за зиму приносит не более 50 м3/м снега. При достаточном наличии роторных снегоочистителей раскрытие мелких выемок можно производить и при объемах снегоприноса до 100 м3/м.

Эта рекомендация автора была основана на том, что, согласно теоретическим исследованиям А.X. Хргиана (1934) и лабораторным Б.В. Иванова (1954 г.), ветровой поток при проходе через выемку с любой пологостью откосов претерпевает расширение, в связи с этим в нем происходит снижение скоростей, и снижение это тем меньше, чем положе откосы выемки. Однако даже при практически полном обтекании раскрытой или разделанной выемки (при уклонах откосов 1:6) скорости ветрового потока над поверхностью земли на оси пути составляют примерно 0,7 от полевой. Подтверждается это и более поздними исследованиями.

Рис. 23. Раскрытые выемки или разделанные под насыпь

Снижение же скорости ветра приводит к выпадению из ветроснегового потока части переносимого снега. Так, при снижении скорости ветра на 0,7 от полевой из ветроснегового потока будет выпадать:

при полевой скорости 7 м/сек - 62 % от общей массы переносимого снега;

при полевой скорости 10 м/сек - 55 % от общей массы переносимого снега;

при полевой скорости 15 м/сек - 50 % от общей массы переносимого снега.

Следовательно, ориентировочно можно принять, что половина от всего приносимого к раскрытой или разделанной выемке снега будет откладываться в ней, и чем больше будет приноситься к выемке снега, тем она быстрее будет заноситься.

Так, в районах, где объем снегоприноса за зиму не превышает 50 м3/м, обычно бывает в среднем 5 метелей. Принимая продолжительность этих метелей одинаковой, за одну метель к выемке принесет 10 м3/м, а отложится в выемке 5 м3/м снега. Длина полосы отложений снега в раскрытой выемке (откосы, надкюветные пространства и ширина земляного полотна) при глубине ее в 1 м будет равна 38 - 17,5 м, толщина отложившегося при этом снега над проезжей частью дороги будет 14 - 28 см. Движение по такому слою снега уже затруднено и даже просто невозможно и потому откладывающийся снег необходимо все время убирать. Следовательно, все раскрытые или разделанные под насыпь выемки при любом объеме приносимого к ним снега являются снегозаносимыми. Такие выемки только лишь уменьшают интенсивность снегозаноса, но не устраняют его.

6.3. Снегозаносимость нулевых мест и насыпей

Нулевые места и насыпи высотою менее толщины образующегося рядом снежного покрова представляют собою мелкие выемки и потому заносятся переносимым снегом так же, как такие выемки.

Насыпи высотою большей образующегося рядом снежного покрова уже по-иному воздействуют на ветровой поток. В этом случае ветровой поток, подходя к насыпи, испытывает сжатие, и скорости его при переходе через насыпь увеличиваются. Это увеличение скорости над насыпями разной высоты, по данным Б.В. Иванова (1954 г.), приведено в таблице 14.

Таблица 14

Высота модели, см

Высота, соответствующая насыпи в натуре, м

Относительная скорость на высоте 1 см (в натуре на высоте 0,25 м)

над наветренной бровкой насыпи

над осью пути

над подветренной бровкой насыпи

4

1,0

1,20

1,09

1,05

6

1,5

1,24

1,10

1,00

8

2,0

1,38

1,15

1,04

12

3,0

1,45

1,22

1,12

Наблюдениями установлено, что на высоте до 2 м над поверхностью земли беспрерывно происходят изменения скорости ветра. Изменения эти даже за долю секунды могут быть по абсолютной величине до 3 м/сек в ту или другую сторону.

Минимальная скорость над поверхностью земли, при которой уже возможен перенос снега, находится в пределах 1,4 - 2,1 м/сек. Следовательно, чтобы обеспечить обязательный перенос снега по верхней плоскости насыпи, скорость над подветренной бровкой насыпи должна быть не менее 5,1 м/сек, а над наветренной - не менее 6,1 м/сек. Какие при этом должны быть скорости ветра над поверхностью земли в поле и по флюгеру, показано в таблице 15.

Таблица 15

Высота насыпи, м

Скорость над наветренной бровкой насыпи, м/сек

Скорость над поверхностью земли в поле, м/сек

Скорость по флюгеру, м/сек

1,0

6,1

5,10

14,20

1,5

6,1

4,90

13,65

2,0

6,1

4,40

12,40

3,0

6,1

4,20

11,85

13,0

6,1

3,05

7,60

Таким образом, для полного обеспечения переноса снега по верхней плоскости насыпи, оказывается, нужны довольно большие скорости ветра, причем, чем меньше высота насыпи, тем нужна большая скорость, т.е. с уменьшением высоты насыпи повышается вероятность отложения на ней переносимого снега.

Пока перенос снега через насыпь рассматривался как чистое явление без учета влияния движения транспорта и очистки проезжей части и обочин от снега. В действительной обстановке проявляются и эти два фактора. Движение создает дополнительные препятствия переносу снега по верхней плоскости насыпи, вызывая образование мелких снежных гребешков и особенно колей в выпавшем слое снега. Очистка снега с проезжей части и обочин устраняет эти препятствия. Но и сама снегоочистка при неправильном ее проведении может стать фактором, создающим дополнительные препятствия для переноса снега (создание снежных валов по краям очищаемой полосы). Следовательно, нужно учитывать и этот фактор.

Кроме того, и это часто имеет место, препятствиями переносу снега по верхней плоскости насыпи могут быть всевозможные предметы, находящиеся на обочинах, на бровке или на откосе насыпи, или даже на придорожной полосе. К ним относятся штабеля материалов на обочинах; трава, бурьян, кустарник на бровке насыпи или на ее откосах; группы деревьев, заборы, отдельные строения, расположенные на таком расстоянии от проезжей части, что откладываемый ими снег ложится на дорожное полотно.

Зарегистрировано много случаев и неправильного расположения снегозащитных лесонасаждений, щитов и заборов по отношению к дорожному полотну. Недостаточное их расстояние от дорожного полотна приводит к отложению снега этими снегозадерживающими устройствами на проезжей части дорог.

6.4. Снегозаносимость различных форм рельефа местности

Движение воздуха относительно неровностей земной поверхности (возвышенности, холмы, долины, овраги, террасы) воспроизводит в крупном масштабе примерно те же изменения в ветровом потоке, что и у сравнительно небольших препятствий (насыпи, выемки). Неровности земной поверхности вызывают в ветровом потоке образование вихрей и самостоятельных циркуляций воздуха (зоны циркуляции), развивающихся, главным образом, в подветренной части неровности, а переломы рельефа образуют уменьшение или увеличение сечения ветрового потока, и, как результат этого, уменьшение или увеличение его скоростей.

На рис. 24 на подветренном откосе видна зона циркуляции ветрового потока. Пунктиром обозначен путь перелета воздушного шара через высокую гряду с достаточно крутым подветренным склоном. Как видно из этого пунктира, шар до вершины гряды следовал общему направлению ветрового потока, а перевалив вершину и попав в зону циркуляции, сделал три петли, после чего приземлился.

Рис. 24. Образование на подветренном склоне возвышенности зоны циркуляции

Позади леса, как это показано на рис. 25, также образуется зона циркуляции, вызывающая обратное направление воздушных струй в нижнем слое и значительное снижение скорости их движения.

Рис. 25. Образование зоны циркуляции за густым лесом

Зона циркуляции воздуха образуется и в котловинах. На рис. 26 пунктиром изображен путь подъема воздушного шара со дна большой котловины. Как показывает линия пунктира, шар, поднимаясь, вначале отклонился против направления ветра над котловиной, затем, попав в слой воздуха над котловиной, переменил направление своего полета и последовал за ветровым потоком. Такой путь воздушного шара показывает, что ветровой поток, проходя над котловиной, вызывает в ней зону циркуляции.

Рис. 26. Образование в котловине зоны циркуляции под воздействием проходящего над ней ветрового потока

На изменение скоростей ветрового потока, вызываемом переломами рельефа, показывают рис. 27 и 28. Здесь видно, что нижние слои ветрового потока почти полностью следуют изгибам неровностей, а верхние слои - уже в достаточно слабой степени. Эти изгибы показывают, что между вершинами холмов и верхними, слабо деформированными слоями ветрового потока, проходит увеличенное количество воздуха. В связи с этим скорость ветра на вершинах холмов будет значительно больше, чем в понижениях между холмами.