n-1=Cn-1(3jn-2+2hYn-2).

Значения угла закручивания получаем аналогично (7) (обратный ход):

qn-1=Cn-1qn+n-1.

Граничные условия представлены в виде:

C0=01, 0=0, N-1=N-1.

2.2. Область применения программы ограничивается следующими возможностями:

расстояние между главными балками не должно быть более 1/4 расчетного пролета;

количество мест изменения сечения на половине пролета не более 10;

количество одновременно рассчитываемых сечений не более 20 на половине пролета.

2.3. Ввод исходных данных осуществляется в соответствии с бланками, изображенными на рис. 4, 5, 6.

Вывод информации производится в виде таблиц. При этом имеется пять вариантов печати - один основной и четыре дополнительных. Для назначения того или иного варианта служит индекс управления печатью IP, вводимый с исходными данными (см. рис. 6).

Рис. 4

Рис. 5

Рис. 6

Таблица 1. Варианты вывода информации

Значение IP

Наименование варианта

Дополнительные сведения о выданной информации

1

Основной

1. Геометрические характеристики сечений

2. Силовые факторы стесненного кручения

3. Нормальные напряжения

4. Касательные напряжения

2

Дополнительный

1. Геометрические характеристики сечений

3

»

2. Силовые факторы

4

»

3. Нормальные напряжения

5

»

4. Касательные напряжения

Возможные варианты вывода информации в зависимости от индекса управления печатью IP приведены в табл. 1.

Использование основного варианта позволяет получать для каждого сечения максимальный объем информации в виде таблиц. Пример информации для сечения х=21 м показан в табл. 2-5.

Использование дополнительного варианта дает возможность выводить информацию частями (пример показан в табл. 6-8).

Таблица 1. Геометрические характеристики сечения

Момент инерции секториальный, м6

Момент инерции крученая, м4

Положение ц. т. от низа вертикала, м

Расстояние от ц. т. плиты до центра изгиба, м

3,30316

0,0754

2,058

0,852

Таблица 3. Силовые факторы от временной нагрузки

Общий крутящий момент, т·м (кН·м)

Крутящий момент, т·м (кН·м)

Биомомент, т·м2 (кН·м2)

Изгибно-крутящий момент, т·м (кН·м)

-1,51 (-15,1)

-0,06 (-0,6)

-109,72 (-1097,2)

-1,46 (-14,6)

-14,84 (-148,4)

-0,55 (-5,5)

-1076,35 (-10763,5)

-14,29 (-142,9)

Таблица 4. Нормальные напряжения от кручения временной нагрузкой

В нижнем поясе, кг/см2 (МПа)

В верхнем поясе, кг/см2 (МПа)

На уровне ц. т. плиты, кг/см2 (МПа)

24,1 (2,4)

-7,5 (-0,7)

-2,0 (-2,0)

Угол закручивания: Ф=-0,1510569Е-02 рад.

Таблица 5. Касательные напряжения от кручения временной нагрузкой

На уровне ц. т., кг/см2 (МПа)

Максимальные в стенке, кг/см2 (МПа)

На верхней грани плиты, кг/см2 (МПа)

0,8 (0,1)

0,8 (0,1)

0,8 (0,1)

Таблица 6. Геометрические характеристики сечения

Момент инерции секториальный, м6

Момент инерции крученая, м4

Положение ц. т. от низа вертикала, м

Расстояние от ц. т. плиты до центра изгиба, м

х=1,000 м

1,88593

0,07539

2,289

0,569

х=2,000 м

1,88593

0,07539

2,289

0,569

х=4,200 м

1,88593

0,07539

2,289

0,569

х=8,400 м

2,84132

0,07540

2,133

0,763

х=12,600 м

3,30316

0,07541

2,058

0,852

х=18,800 м

3,30316

0,07541

2,058

0,852

х=21,000 м

3,30316

0,07541

2,058

0,852

2.4. При использовании для решения задачи ЭВМ СМ-4 необходимый объем памяти без оптимизации расположения массивов находится в интервале от 40 до 56 Кбайт. Время счета около 10 с.

Копию программы SK можно заказать с подлинников, которые находятся в ВЦ Минавтодора РСФСР и СибАДИ.

Таблица 7. Силовые факторы от временной нагрузки

Общий крутящий момент, т·м (кН·м)

Крутящий момент, т·м (кН·м)

Биомомент, т·м2 (кН·м2)

Изгибно-крутящий момент, т·м (кН·м)

х=1,000 м

-24,35

-14,11

-9,64

-10,22

-238,84

-138,41

-94,58

-100,27

х=2,000 м

-23,20

-14,12

-18,87

-9,08

-227,64

-138,56

-185,12

-89,09

х=4,200 м

-19,12

-13,60

-34,88

-5,52

-187,61

-133,39

-342,16

-54,15

х=8,400 м

-14,33

-11,09

-76,86

-3,24

-140,57

-108,81

-754,020

-31,81

х=12,600 м

-11,10

-7,75

-102,05

-3,36

-108,92

-76,00

-1001,09

-32,93

х=18,800 м

-2,46

-2,10

-109,35

-0,36

-24,09

-20,63

-1072,71

-3,49

х=21,000 м

-1,51

-0,06

-109,72

-1,46

-14,84

-0,55

-1076,35

-14,29

Таблица 8. Нормальные напряжения от кручения временной нагрузкой  

В нижнем поясе, кг/см2 (МПа)

В верхнем поясе, кг/см2 (МПа)

На уровне ц. т. плиты, кг/см2 (МПа)

х=1,000 м

3,8                              0,4

-0,7                             -0,1

-0,2                             -0,0

Угол закручивания: Ф=-0,8926201Е-04 рад

х=2,000 м

7,5                              0,7

-1,3                             -0,1

-0,4                             -0,0

Угол закручивания: Ф=-0,1932385Е-03 рад

х=4,200 м

13,9                            1,4

-2,4                             -0,2

-0,7                             -0,1

Угол закручивания: Ф=-0,4489926Е-03 рад

 

х=8,400 м

 

19,4                            1,9

-5,3                             -0,5

-1,5                             -0,1

Угол закручивания: Ф=-0,9113585Е-03 рад

х=12,600 м

22,4                            2,2

-6,9                             -0,7

-1,9                             -0,2

Угол закручивания: Ф=-0,1264877Е-02 рад

х=18,800 м

24,0                            2,4

-7,4                             -0,7

2,0                              -0,2

Угол закручивания: Ф=-0,1501302Е-02 рад

х=21,000 м

24,1                            2,4

-7,5                             -0,7

-2,0                             -0,2

Угол закручивания: Ф=-0,1510569Е-02 рад

3. Методика определения прогибов и усилий в элементах уширенных пролетных строений по программе ЭМ-10 ХАДИ

Теоретической основой программы является энергетический метод, переработанный для разрезных пролетных строений из разного материала с диафрагмами и без них. Программа составлена на языке PL для реализация на ЭВМ ЕС.

Методика позволяет быстро определять прогибы и усилия в конструкциях с любым количеством балок. Для экономии машинного времени и ввода меньшего количества исходных данных в программе ЭМ-10 ХАДИ предусмотрено наибольшее количество балок - 15 шт., что достаточно для расчета большинства реальных мостов. Время работы ЭВМ зависит от формы обращения к ЭВМ: если программа вводится с помощью перфокарт - время работы ЭВМ от 1 до 5 мин; если программа записана в памяти ЭВМ - до 1 мин.

При первой схеме загружения ЭВМ устанавливает линейную полосовую нагрузку 1 т/м (100 Н/см) над первой балкой и далее автоматически переставляет нагрузку над всеми остальными балками. В результате счета ЭВМ печатает данные (прогибы и изгибающие моменты в середине пролета; поперечные силы на опоре; изгибающие моменты в продольных сечениях плиты или диафрагме), которые используются как эпюры влияния прогибов или усилий.

Загружение эпюр влияния с помощью ЭВМ не предусмотрено, так как машина, очень долго анализирует результаты расчетов при определении наихудшего условия (в большинстве случаев имеется не один, а несколько максимумов).

Эпюры влияния следует вычертить на миллиметровой бумаге и в худшем положении установить нагрузку. Худшим считают такое положение, при котором произведение нагрузки qэкв на сумму ординат-эпюр влияния под нагрузкой будет наибольшим.

Так как эквивалентную нагрузку вычисляют по изгибающему моменту и в программе используется ограниченное количество членов ряда, значения прогибов получаются с некоторым завышением (наибольшее равно 25% при одной сосредоточенной силе в середине пролета), при испытаниях мостов с малым количеством машин на пролете (2-4 шт.) теоретические прогибы желательно вычислять с поправкой.

Для проверки правильности расчетов при вычислении изгибающих моментов в главных балках может быть использовано условие:

;

или

Mi=Piyi(5%10%),

где Mi - сумма значений изгибающих моментов во всех главных балках при одинаковом расположении нагрузки над всеми эпюрами;  или ??Piyi - изгибающий момент от рассматриваемой линейной или полосовой нагрузки при загружении простой балки.

Исходные данные для программы ЭМ-10 ХАДИ: количество балок (блоков), расчетный пролет, расстояния между балками и от края плиты (накладные тротуары не учитываются), моменты инерции при изгибе и кручении балок, модули упругости и коэффициенты Пуассона материала плиты и ребер. В программе заложено, что плита выполнена из одного материала (единое значение коэффициента Пуассона), а ребра могут быть из разнородных материалов.

Ниже приведен пример определения прогибов и усилий в элементах пролетного строения, построенного по типовому проекту вып. 56 СДП, уширенного блоками по типовому проекту 710/5 и усиленного путем укладки монолитной железобетонной плиты толщиной 10 см над старой частью пролета. Схема пролетного строения приведена на рис. 7, а. Пролетное строение рассчитывали в двух вариантах: с передачей М и Q в поперечном направлении только на диафрагмы и с передачей всего усилия поперек моста на новую монолитную плиту. Второй вариант дал более благоприятный результат, так как армирование диафрагм оказалось недостаточным.

Исходные данные второго варианта: lp=1110 см; n=10 шт.; D1=D11=85 см; D2=D10=166 см; D3=D9=40 см; D4=D5=D6=D7=D8=140 см; I1=I10=3370000 см4; I2=I9=2866000 см4; I3=I8=2910000 см4; I6=I7=3559000 см4; Iкр1=Iкр10=357000 см4; Iкр2=Iкр9=312000 см4; Iкр3=Iкр8=460000 см4; Iкр4=Iкр5=Iкр6=Iкр9=823000 см4; Коэффициент Пуассона плиты =0,167; Iпл10=29400 см4; Iпл2,9=29400 см4; Iпл3=Iпл4=…=Iпл2=131200 см4; Eпл1=Eпл2=Eпл3=…=Eпл11=315000 кг/см2 (31500 МПа); Eр1=Eр2=…=Eр10=315000 кг/см2 (31500 МПа); vр1=vр2=…=vр10=0,167

В табл. 9 приведены значения ординат эпюр влияния прогибов и усилий, вычисленные на ЭВМ. На рис. 8 приведена эпюра, результаты загружения которых приведены в табл. 10 и 11.

Выводы по приведенному примеру (табл. 5-6):

а) изгибающий момент в l/2 средних балок не превышает допустимого для этих конструкций;

б) объединение конструкций по плите h=10 см и сохранение верхних накладок в существующих конструкциях обеспечивает нормальное распределение усилий между балками;

в) монолитная плита должна армироваться в двух уровнях с площадью нижней арматуры на 1 м Fa=18 см2 (девять стержней ?? 16 П).

Рис. 7. Эпюры прогибов и изгибающих моментов в l/2 главных балок

Таблица 9. Значение ординат эпюр влияния прогибов и усилий

Схема загружения

№ балки

Прогибы W, см

Изгибающие моменты в l/2 главной балке М, кН·м

Поперечные силы на эпюре Q, кH

Изгибающие моменты в плите Мпл, кН·м

3

1

0,039

3,27

9,42

0,074

2

0,044

1,53

8,92

0,332

3

0,044

1,95

9,04

1,650

4

0,038

4,28

9,70

1,578

5

0,026

23,28

6,59

0,597

6

0,011

9,94

2,81

0,740

7

-0,001

0,47

0,13

1,694

8

-0,005

-3,43

-0,97

-1,722

9

-0,004

-3,15

-0,89

-0,345

10

0,002

1,68

0,48

0,076

4

1

0,007

6,07

1,72

0,144

2

0,034

24,35

6,89

0,546

3

0,038

28,04

7,93

2,767

4

0,045

40,67

11,51

3,014

5

0,039

35,07

9,92

1,901

6

0,024

21.84

6,18

0,110

7

0,009

8,04

2,28

-1,373

8

-0,001

-0,38

-0,11

-1,752

9

-0,001

-0,38

-0,11

-1,752

10

-0,002

-1,30

-0,37

-0,086