Назначение токоограничивающего резистора - защита испытательной установки от разрушений при случайном перекрытии в ней и одновременном замыкании в испытуемой сети.

4. При испытании изоляции электрических сетей под нагрузкой возможны двух- и трехфазные КЗ (перекрытия) на оборудовании подстанций, поэтому на время производства испытаний должны быть прекращены ремонтные и другие работы, ведущиеся на подстанциях испытуемого участка, в том числе и у абонентов, а персонал выведен из подстанции на все время испытаний.

Рис. П18.1. Схема испытаний изоляции участка сети под нагрузкой повышенным напряжением постоянного (пульсирующего) тока:

1 - выключатели; 2 - емкость сети; 3 - секция шин питающего центра; 4 - отходящие кабельные линии; 5 - трансформатор с выведенной нулевой точкой для подсоединения испытательной установки; 6 - трансформатор питающего центра (35/6, 110/6 кВ); 7 - испытательная установка постоянного тока

5. В целях повышения эффективности испытаний изоляции электрических сетей под нагрузкой рекомендуется проводить дополнительные испытания кабельных линий с отключением с периодичностью 1 раз в 2-3 года. Учитывая, что при испытаниях под нагрузкой междуфазная изоляция кабелей не испытывается, целесообразно при дополнительных испытаниях с отключением применять не только однополярную, но и двухполярную схему (рис. П18.2), которая позволяет более тщательно проверить состояние междуфазной изоляции за счет более высокого испытательного напряжения, прикладываемого к ней.

6. При дополнительных испытаниях значения испытательных напряжений в пределах, указанных в "Нормах испытания электрооборудования", устанавливаются с учетом местных условий главным инженером энергосистемы (электрической сети).

Рис. П18.2. Схема испытаний кабельной линии от двухполярной

установки постоянного тока:

1 - испытательный трансформатор; 2 - полупроводниковые выпрямители; 3 - испытуемая кабельная линия

Приложение 19

Индукционный метод уточнения места прохождения трасс

кабельных линий, глубины залегания кабелей и расположения

на них соединительных муфт

1. Трасса кабеля определяется включением генератора звуковой частоты преимущественно по схеме фаза-фаза или по схеме фаза-земля.

Один вывод генератора присоединяется к жиле кабеля, противоположный конец которой заземляется, другой вывод генератора также заземляется. Значение тока работающего генератора должно быть не менее 1-5 А.

При движении по трассе ось приемной рамки (антенны) должна быть расположена вертикально к поверхности земли.

Для определения трассы кабельной линии лицо, производящее работу, передвигается вдоль кабеля от места его присоединения (подстанции), держа приемную рамку и слегка перемещая ее в горизонтальной плоскости поперек оси кабельной линии. В телефоне при этом будет улавливаться минимальная громкость звука над кабелем. При отклонении рамки вправо или влево от трассы кабеля в телефоне будут слышны усиления громкости звука (рис. П19.1, а). Таким образом трасса кабеля будет проходить по линии минимальной слышимости звука в телефоне.

При пропускании тока звуковой частоты по двум фазам кабеля максимум громкости звука будет слышен над кабелем (рис. П19.1, б), при этом вследствие скрутки жил кабеля по мере перемещения вдоль линии будет происходить периодическое изменение слышимости (соответствующее шагу скрутки жил 1-).

Отыскание отключенного кабеля среди работающих должно производиться по схеме фаза-фаза.

2. Для определения глубины заложения кабеля лицо, производящее работу, перемещает две крестообразно расположенные и последовательно соединенные приемные рамки в обе стороны от оси кабельной линии. При смещении их в сторону от оси кабеля на расстояние, равное глубине заложения кабеля, в обеих рамках э.д.с. оказываются равными и имеющими противоположные знаки, вследствие чего в телефоне слышна минимальная громкость звука (рис. П19.2). Расстояние между центрами рамок h при смещении их в крайние положения будет равно двойной глубине заложения кабеля, при этой глубину заложения необходимо отсчитывать от центра рамок, а не от поверхности земли.

а)

б)

Рис. П19.1. Характер изменения звука при удалении рамки вправо или влево от линии

прохождения кабеля:

а - при пропускании тока звуковой частоты по схеме фаза-земля; б - при пропускании тока звуковой частоты по схеме фаза-фаза; 1 - кабель; 2 - наибольшая слышимость; 3 - наименьшая слышимость; 4, 4' - приемная рамка

3. Для уточнения расположения соединительных муфт по двум жилам кабеля пропускается ток от генератора звуковой частоты, жилы с другой стороны линии замыкаются накоротко. Пропускаемый по жилам ток должен быть не менее 20 А. Так как в соединительных муфтах токоведущие жилы разведены на значительно большие расстояния по сравнению с жилами в целом месте кабеля, внешнее электромагнитное поле над муфтами резко усиливается, что и обнаруживается с помощью приемной рамки, усилителя и телефона.

Рис. П19.2. Определение глубины заложения кабельной линии

в земле индукционным методом:

1 - приемные рамки; 2 - кабель

При определении местоположения муфт следует иметь в виду, что и над кабелем по его длине будут прослушиваться периодические усиления звука, соответствующие расстоянию шага скрутки токоведущих жил. Однако над муфтой громкость звучания будет значительно больше.

Для выполнения указанных выше работ применяются кабелеискатели различной конструкции (например, ИПТК-69 и ТПК-1).

Приложение 20

Характеристики методов определения мест повреждения

Описание и физическая характеристика метода

Выбор метода, область и условия его применения

Применяемые приборы и аппаратура

А. Относительные методы

1. Импульсный метод основан на измерении интервала времени между моментом посылки в поврежденную линию специального, так называемого, зондирующего импульса и моментом возвращения отраженного импульса от места повреждения в точку измерения (к месту подключения прибора к линии). На экране осциллографа одновременно с изображением импульсов проектируется изображение масштабных меток, позволяющих производить отсчет непосредственно в метрах, исходя из условия, что скорость распространения электромагнитных колебаний в силовых кабелях составляет 160??3 м/мкс.

Метод может быть применен на кабелях любых конструкций. Сечение и материал жил практически не влияют на скорость распространения импульсов. Метод применим на кабельных линиях практически любых длин. Зона повреждения определяется с точностью до нескольких метров. Импульсным методом можно определить:

1) однофазные и междуфазные замыкания устойчивого характера (отраженный импульс направлен своей вершиной вниз);

2) обрыв одной, двух или всех жил (отраженный импульс направлен вверх);

3) сложные, в том числе многоместные повреждения.

Метод не применим при переходных сопротивлениях более 100 Ом

ИКЛ-4, ИКЛ-5, P5-1A, Р5-5, Р5-8, Р5-9, Р5-10

2. Метод колебательного разряда основан на измерении периода (или полупериода) собственных электрических колебаний в кабеле, возникающих в нем в момент пробоя (разряда в поврежденном месте).

Поврежденная жила кабеля заряжается до Uпроб от выпрямительной установки. Значение Uпроб должно быть ниже испытательного напряжения кабеля.

Расстояние до места повреждения пропорционально периоду собственного колебания (при измерении прибором ЭМКС-58М) и полупериоду собственного колебания (при измерении прибором Щ-4120). После пробоя возникает колебательный процесс, и прибор, включенный через емкостный делитель, срабатывает, а стрелочный или цифровой индикатор фиксирует расстояние от места пробоя в соответствии с выбранным масштабом измерения.

Метод может быть применен для определения мест повреждений при заплывающем пробое и в случаях, когда в месте повреждения появляются электрические разряды.

При определении места однофазного пробоя целые жилы должны быть изолированы. При пробое между жилами на одну жилу подается напряжение, а две остальные заземляются через сопротивление более 1000 Ом

Электронный микросекундомер ЭМКС-58М. Измеритель расстояния до места повреждения кабеля Щ-4120.

Емкостный делитель напряжения (антенна). Испытательная выпрямительная установка на напряжение 30-50 кВ

3. Петлевой метод основан на том, что поврежденная и здоровая жилы кабеля соединяются накоротко с одной стороны (образуется петля). С другой стороны к концам жил подсоединяются дополнительные регулируемые резисторы -создается схема моста (рис. П20.1). При равновесии моста расстояние до места повреждения находится из выражения

где L - полная длина кабельной линии, м;

r1 - значение сопротивления резистора, подсоединенного к поврежденной жиле;

r2 - значение сопротивления резистора, подсоединенного к неповрежденной жиле.

Для линии, состоящей из кабелей разных сечений, длина линии L приводится к одному эквивалентному сечению. Для устранения погрешностей следует обеспечить надежность контактов в месте установки перемычки и подсоединения измерительного моста и устранить влияние на точность измерений соединительных проводников.

Измерения по определению места повреждения следует производить с обоих концов кабельной линии (меняя место установки перемычки). Показателем правильно произведенных измерений является условие:

где первый член в скобках составлен из значений сопротивлений, найденных при измерениях с одной стороны кабельной линии, а второй член - с другой ее стороны

Для пользования методом петли необходимо иметь хотя бы одну неповрежденную жилу кабеля или хотя бы одну жилу с переходным сопротивлением, значительно большим переходных сопротивлений двух других жил (в 10-102 раз). Значение переходного сопротивления поврежденной жилы должно быть не более 5000 Ом. При больших значениях устойчивых переходных сопротивлений можно применить питание схемы моста от источника повышенного напряжения 2-20 кВ, т.е. применить мост высокого напряжения обычного ресхордного типа, управление которым производится с помощью изолирующей штанги. Методом петли надежно определяются однофазные и двухфазные замыкания устойчивого характера.

Трехфазные замыкания могут быть определены при наличии дополнительного провода; при измерениях может быть использован параллельно проложенный кабель

Специальный кабельный или любой другой измерительный мост. Для более точных измерений двойной мост Томсона. Гальванометр (нулевой). Источник питания постоянного тока напряжением 10-200 В (аккумулятор, сухие батареи). Измерительные провода (типа "магнето"), снабженные струбцинками для подсоединения к жилам (наконечникам) кабеля. Перемычка для замыкания фаз кабеля с одной стороны. Установка на напряжение 2-20 кВ в случае применения моста высокого напряжения (может использоваться мегаомметр на напряжение 2500 В)

Б. Абсолютные методы

4. Индукционный метод основан на принципе улавливания магнитного поля над кабелем, по поврежденным жилам которого пропускается ток звуковой частоты (800-1000 Гц) от генератора. При этом вокруг кабеля образуется магнитное поле, напряженность которого пропорциональна значению тока в кабеле. Следуя по трассе кабельной линии с приемной рамкой, усилителем и телефонными наушниками, улавливают создаваемые кабелем электромагнитные колебания до тех пор, пока не дойдут до места повреждения (рис. П20.2). За местом повреждения громкость звука в телефоне резко снижается (или пропадает) и пропадают его периодические усиления. Четкие периодические усиления звука до места повреждения происходят потому, что жилы кабеля скручены и на протяжении шага скрутки 1- меняют свое положение в пространстве. Ток, пропускаемый по жилам, должен быть достаточно большим (15-20 А), но так как большое значение переходного сопротивления в месте повреждения часто препятствует этому, место повреждения предварительно прожигают

С помощью индукционного метода определяются двухфазные и трехфазные замыкания устойчивого характера при значении переходного сопротивления в месте повреждения (с жилы на жилу) не более 20-25 Ом.

Если значение переходного сопротивления в месте повреждения невозможно снизить до указанных пределов, то следует применить другие методы измерений.

Этим методом можно определить место нахождения отключенного кабеля, подлежащего ремонту и находящегося в группе других кабелей. Метод не применим при большой глубине залегания кабеля (более 1,5-)

Генератор звуковой частоты. Приемная рамка (антенна). Усилитель низкой частоты. Телефонные наушники. Для снижения переходного сопротивления необходима прожигательная установка

5. Акустический метод основан на прослушивании над местом повреждения звуковых колебаний, вызванных искровым разрядом в канале повреждения.

При определении заплывающего пробоя (в муфтах) поврежденная жила заряжается до пробивного напряжения. При устойчивых замыкания, в поврежденную жилу кабеля подаются периодические импульсы постоянного тока через разрядник от накопителя заряда (рис. П20.3, б), при этом одновременно с пробоем искрового промежутка возникает искровой разряд в месте повреждения. Звук, сопутствующий искровому разряду в месте повреждения, прослушивается с поверхности земли с помощью стетоскопа или специального прибора с пьезодатчиком - преобразователем механических колебаний в электрические. В качестве зарядной емкости возможно использование неповрежденных жил кабеля (рис. П20.3, в)

Акустический метод является основным при определении мест повреждения с заплывающим пробоем (рис. П20.3, а). С помощью этого метода можно также определять:

а) однофазные и многофазные замыкания устойчивого характера;

б) обрывы одной или нескольких жил с заземлением в месте обрыва.

Эффективность применения метода зависит от уровня (громкости) звуковых колебаний, которые сопровождают искровой разряд в месте повреждения. При применении этого метода целесообразно использовать большие емкости накопителя при сравнительно малых зарядных напряжениях.

Зарядное напряжение при определении устойчивых замыканий должно быть в пределах двух-трехкратного рабочего напряжения кабельной линии.

Метод не применим при металлическом соединении жилы с оболочкой и отсутствии искровых разрядов в месте повреждения.

При определении заплывающего пробоя разрядное напряжение должно быть ниже испытательного. Следует иметь в виду, что акустический метод сложно применять (а иногда и невозможно) при значительном уровне уличных или промышленных шумов

Испытательная установка постоянного тока на 30-50 кВ. Конденсаторы высокого напряжения. Разрядники. Усилитель с акустическим датчиком (например, АИП-ЗМ, КИАТ-65 и др.)

Деревянный стетоскоп

6. Метод накладной рамки (разновидность индукционного метода) основан на принципе улавливания магнитного поля над кабелем, по поврежденной жиле и оболочке которого пропускается ток звуковой частоты (800-1200 Гц) от генератора. На кабель накладывается рамка, стороны которой расположены симметрично относительно кабеля. При вращении рамки вокруг кабеля звук в телефоне (соединенном с рамкой через усилитель или непосредственно) 2 раза достигает максимума и минимума. Наводимая в рамке э.д.с. за местом повреждения создает в телефоне монотонное звучание без указанных выше усилений и ослаблений звука

Метод применяется для определения мест повреждений преимущественно на открыто проложенных кабельных линиях. На линиях, проложенных в земле, необходимо делать шурфы. Этим методом можно определить места повреждений на кабелях с отдельными металлическими оболочками. Метод применим при пробоях одной жилы на оболочку или при повреждениях изоляции двух и трех жил с большим значением переходного сопротивления

Генератор звуковой частоты. Накладная рамка с телефоном, настроенным в резонанс с частотой генератора.

Усилитель низкой частоты (не обязателен)