*142.286D0,4.0026D0,2.0159D0,28.01D0,31.9988D0/

DATAR0I/0.6682D0,1.2601D0,1.8641D0,2.4956D0,2.488D0,

*1.1649D0,1.8393D0,1.4311D0/

DO 100 I=1,25

100YI(I)=YC(I)

IF(NPR.EQ.1) GO TO 333

BMM=0D0

DO 3333 I=1,25

3333 ВММ=ВММ+YI(I)*ВМI(I)

333YS=0D0

DO 55 I=9,25

YS=YS+YI(I)

55CONTINUE

YS1=0D0

DO 67 I=12,21

67YS1=YS1+YI(I)

YS2=0D0

DO 69 1=22,25

69YS2=YS2+YI(I)

YI(2)=YI(2)+YI(9)+YI(10)

YI(3)=YI(3)+YI(11)

YI(4)=YI(4)+YS1

YS3=YI(4)+YI(5)

IF(NPR.EQ.1.AND.YI(5).LT.0.01D0.AND.YS3.LT.0.03D0) YI(4)=YS3

IF(NPR.EQ.1.AND.YI(5).LT.0.01D0.AND.YS3.LT.0.03D0) YI(5)=0D0

IF(NPR.EQ.0.AND.Y1(5).LT.0.01D0.AND.YS3.LE.0.03D0) YI(4)=YS3

IF(NPR.EQ.0.AND.YI(5).LT.0.01D0.AND.YS3.LE.0.03D0)YI(5)=0D0

YI(6)=YI(6)+YS2

IF(NPR.EQ.0) GO TO 555

ROM=0D0

DO 7 I=1,8

7ROM=ROM+YI(I)*ROI(I)

DO 9 I=1,8

9GI(I)=YI(I)*ROI(I)/ROM

SUM=0D0

DO 11 1=1,8

11SUM=SUM+GI(I)/BMI(I)

SUM=1./SUM

DO 13 I=1,8

13YI(I)=GI(I)*SUM/BMI(I)

555NC=0

YSUM=0D0

DO 155 I=1,8

IF(YI(I).EQ.0D0) GO TO 155

NC=NC+1

NI(NC)=I

Y(NC)=YI(I)

YSUM=YSUM+Y(NC)

BM(NC)=BMI(I)

155CONTINUE

CALL MOLDOL(YI,YS)

DO 551 I=1,NC

551Y(I)=Y(I)/YSUM

RETURN

END

SUBROUTINE MOLDOL(YI,YS)

IMPLICIT REAL*8(A-H,O-Z)

DIMENSION YI(25)

COMMON/Z/Z

Z=-1D0

IF(YI(1).LT.0.65D0.OR.YI(2).GT.0.15D0.OR.YI(3).GT.0.035D0.OR.

*YI(4).GT.0.015D0.OR.YI(5).GT.0.015D0.OR.YS.GT.0.01D0)Z=0D0

IF(YI(6).GT.0.2D0.OR.YI(7).GT.0.15D0.OR.YI(8).GT.0.3D0)Z=0D0

RETURN

END

SUBROUTINE DDIJ(DIJ,LIJ)

IMPLICIT REAL-8(A-H,O-Z)

REAL*8 LIJ(8,8)

DIMENSION DIJ(8,8)

DO 1 I=1,8

DO 1 J=l,8

LIJ(I,J)=0.D0

1DIJ(I,J)=0.D0

DIJ(1,2)=0.036D0

DIJ(1,3)=0.076D0

DIJ(1,4)=0.121D0

DIJ(1,5)=0.129D0

DIJ(1,6)=0.06D0

DIJ(1,7)=0.074D0

DIJ(2,6)=0.106D0

DIJ(2,7)=0.093D0

DIJ(6,7)=0.022D0

DIJ(1,8)=0.089D0

DIJ(2,8)=0.079D0

DU(6,8)=0.211D0

DIJ(7,8)=0.089D0

LIJ(1,2)=-0.074D0

LIJ(1,3)=-0.146D0

LIJ(1,4)=-0.258D0

LIJ(1,5)=-0.222D0

LIJ(1,6)=-0.023D0

LIJ(1,7)=-0.086D0

LIJ(6,7)=-0.064D0

LIJ(7,8)=-0.062D0

RETURN

END

SUBROUTINE PARMIX(DIJ,LIJ,TC,VC,PII,PIM)

IMPLICIT REAL*8(A-H,O-Z)

REAL*8 LIJ(8,8)

DIMENSION Y(8),DIJ(8,8),VCIJ(8,8),TCIJ(8,8),V13(8),TC(8),VC(8),

*PII(8),PIIJ(8,8)

COMMON/PARCM/TCM,VCM/Y/Y/NC/NC/PCM/PCM

DO 1 I=1,NC

1V13(I)=VC(I)**(1.DO/3.DO)

DO 3 I=1,NC

VCIJ(I,I)=VC(I)

PIIJ(I,I)=PII(I)

TCIJ(I,I)=TC(I)

DO 3 J=1,NC

IF(I.GE.J) GO TO 3

VCIJ(I,J)=(1.DO-LIJ(I,J))*((V13(I)+V13(J))/2.)**3

PIIJ(I,J)=(VC(I)*PII(I)+VC(J)*PII(J))/(VC(I)+VC(J))

TCU(I,J)=(1.D0-DIJ(I,J))*(TC(I)*TC(J))**0.5

VCIJ(J,I)=VCIJ(I,J)

PIIJ(J,I)=PIIJ(I,J)

TCIJ(J,I)=TCIJ(I,J)

3CONTINUE

VCM=0.D0

PIM=0.D0

TCM=0.D0

DO 5 I=1,NC

DO 5 J=1,NC

VCM=VCM+Y(I)*Y(J)*VCIJ(I,J)

PIM=PIM+Y(I)*Y(J)*VCIJ(I,J)*PIIJ(I,J)

5TCM=TCM+Y(I)*Y(J)*VCIJ(I,J)*TCIJ(I,J)**2

PIM=PIM/VCM

TCM=(TCM/VCM)**0.5

PCM=8.31451D-3*(0.28707D0-0.05559*PIM)*TCM/VCM

RETURN

END

SUBROUTINE PHASE

IMPLICIT REAL*8(A-H,O-Z)

COMMON/Z/Z/RM/RM/T/T/P/P/PCM/PCM/AI/AO,A1

IF(T.LT.250D0.OR.T.GT.340D0.OR.P.LE.0D0.OR.P.GT.12D0) THEN

Z=0D0

GO TO 134

ENDIF

PR=P/PCM

RO=9D3*P/(RM*T*(1.1*PR+0.7D0))

CALL FUN(RO)

CALL OMTAU(RO,T)

IF(Z.EQ.0D0) GO TO 134

Z=1.D0+AO

134RETURN

END

СПодпрограмма, реализующая итерационный процесс определения

Сплотности из уравнения состояния (метод Ньютона)

SUBROUTINE FUN(X)

IMPLICIT REAL*8(A-H,О-Z)

COMMON/P/P/RM/RM/T/T/AI/AO,A1

ITER=1

1CONTINUE

NPRIZ=0

IF(ITER.NE.l) NPRIZ=1

CALL COMPL(X,T,NPRIZ)

Z=1.D0+AO

FX=1.D6*(P-(1.D-3*RM*T*Z*X))

F=1.D3*RM*T*(1.D0+A1)

DR=FX/F

X=X+DR

IF(ITER.GT.10) GO TO 4

ITER=ITER+1

IF(DABS(DR/X).GT.1.D-6) GO TO 1

4CALL COMPL(X,T,NPRIZ)

RETURN

END

SUBROUTINE OMTAU(RO,T)

IMPLICIT REAL*8(A-H,O-Z)

COMMON/PARCM/TCM,VCM/Z/Z

Z=-1D0

TR=T/TCM

ROR=RO*VCM

IF(TR.LT.1.05D0) Z=0D0

IF(ROR.LT.0.D0.OR.ROR.GT.3.D0) Z=0D0

RETURN

END

SUBROUTINE COMPL(RO,T,NPRIZ)

IMPLICIT REAL*8(A-H,O-Z)

DIMENSION B(10,8),BK(10)

COMMON/PARCM/TCM,VCM/B/B/AI/AO,A1

IF(NPRIZ.NE.0) GO TO 7

TR=T/TCM

DO 1 I=1,10

BK(I)=0

DO 1 J=1,8

1BK(I)=BK(I)+B(I,J)/TR**(J-1)

7ROR=RO*VCM

AO=0.D0

A1=0.D0

DO 33 I=1,10

D=BK(I)*ROR**I

AO=AO+D

33A1=A1+(I+1)*D

RETURN

END

BLOCK DATA BDVNIC

IMPLICIT REAL*8(A-H,O-Z)

COMMON/PARCD/VCD(8),TCD(8),PIID(8)/ABIJ/AIJ(10,8),BIJ(10,8)

DATA TCD/190.67D0,305.57D0,369.96D0,425.4D0,407.96D0,

*125.65D0,304.11D0,373.18D0/

DATA VCD/163.03D0,205.53D0,218.54D0,226.69D0,225.64D0,

*315.36D0,466.74D0,349.37D0/

DATA PIID/0.0006467D0,0.1103D0,0.1764D0,0.2213D0,0.2162D0,

*0.04185D0,0.2203D0,0.042686D0/

DATA AIJ/.6087766D0,-.4596885D0,1.14934D0,-.607501D0,

*-.894094D0,1.144404D0,-.34579D0,-.1235682D0,.1098875D0,

*-.219306D-1,-1.832916D0,4.175759D0,-9.404549D0,10.62713D0,

*-3.080591D0,-2.122525D0,1.781466D0,-.4303578D0,-.4963321D-1,

*.347496D-1,1.317145D0,-10.73657D0,23.95808 D0,-31.47929D0,

* 18.42846D0,-4.092685D0,-. 1906595D0,.4015072D0,-.1016264D0,

*-.9129047D-2,-2.837908D0,15.34274D0,-27.71885D0,35.11413D0,

*-23.485D0,7.767802D0,-1.677977D0,.3157961D0,.4008579D-2,0.D0,

*2.606878D0,-11.06722D0,12.79987D0,-12.11554D0,7.580666D0,

*-1.894086D0,4*0.D0,

*-1.15575D0,3.601316D0,-.7326041D0,-1.151685D0,.5403439D0,

*5*0.D0,.9060572D-1,-.5151915D0,.7622076D-1,7*0.D0,

*.4507142D-1,9*0.D0/

DATA BIJ/-.7187864D0,10.67179D0,-25.7687D0,17.13395D0,

*16.17303D0,-24.38953D0,7.156029D0,3.350294D0,-2.806204D0,

*.5728541D0,6.057018D0,-79.47685D0,216.7887D0,-244.732D0,

*78.04753D0,48.70601D0,-41.92715D0,10.00706D0,1.237872D0,

*-.8610273D0,-12.95347D0,220.839D0,-586.4596D0,744.4021D0,

*-447.0704D0,99.6537D0,5.136013D0,-9.5769D0,2.41965D0,

*.2275036D0,15.71955D0,-302.0599D0,684.5968D0,-828.1484D0,

*560.0892D0,-185.9581D0,39.91057D0,-7.567516D0,-.1062596D0,

*0.D0,-13.75957D0,205.541D0,-325.2751D0,284.6518D0,

*-180.8168D0,46.05637D0,4*0.D0,

*6.466081D0,-57.3922D0,36.94793D0,20.77675D0,-12.56783D0,

*5*0.D0,-.9775244D0,2.612338D0,-.4059629D0,7*0.D0,

*-.2298833D0,9*0.D0/

END

ПРИЛОЖЕНИЕ Г

(обязательное)

Примеры расчета коэффициента сжимаемости природного газа

Г.1 Модифицированный метод NX19

Плотность при 0,101325 МПа и 293,15 К: 0,6799 кг/м3

Содержание:

азота 0,8858 мол. %

диоксида углерода 0,0668 мол. %

Давление 2,001 МПа

Температура 270,00 К

Коэффициент сжимаемости 0,9520

Давление 2,494 МПа

Температура 280,00 К

Коэффициент сжимаемости 0,9473

Давление 0,900 МПа

Температура 290,00 К

Коэффициент сжимаемости 0,9844

Г.2 Уравнение состояния GERG-91

Плотность при 0,101325 МПа и 293,15 К: 0,6799 кг/м3

Содержание:

азота 0,8858 мол. %

диоксида углерода 0,0668 мол. %

Давление 2,001 МПа

Температура 270,00 К

Коэффициент сжимаемости 0,9521

Давление 3,997 МПа

Температура 290,00 К

Коэффициент сжимаемости 0,9262

Давление 7,503 МПа

Температура 330,00 К

Коэффициент сжимаемости 0,9244

Г.3 Уравнение состояния AGA8-92DC

Состав природного газа в молярных процентах:

метан 98,2722

этан 0,5159

пропан 0,1607

н-бутан 0,0592

азот 0,8858

диоксид углерода 0,0668

н-пентан 0,0157

н-гексан 0,0055

н-гептан 0,0016

н-октан 0,0009

гелий 0,0157

Плотность при 0,101325 МПа и 293,15 К: 0,6799 кг/м3

Давление 2,001 МПа

Температура 270,00 К

Коэффициент сжимаемости 0,9520

Давление 3,997 МПа

Температура 290,00 К

Коэффициент сжимаемости 0,9262

Давление 7,503 МПа

Температура 330,00 К

Коэффициент сжимаемости 0,9246

Г.4 Уравнение состояния ВНИЦ СМВ

Состав природного газа в молярных процентах:

метан 89,2700

этан 2,2600

пропан 1,0600

и-бутан 0,0100

азот 0,0400

диоксид углерода 4,3000

сероводород 3,0500

пропилен 0,0100

Плотность при 0,101325 МПа и 293,15 К: 0,7675 кг/м3

Давление 1,081 МПа

Температура 323,15 К

Коэффициент сжимаемости 0,9853

Давление 4,869 МПа

Температура 323,15 К

Коэффициент сжимаемости 0,9302

Давление 9,950 МПа

Температура 323,15 К

Коэффициент сжимаемости 0,8709

ПРИЛОЖЕНИЕ Д

(обязательное)

Влияние погрешности исходных данных на погрешность расчета коэффициента сжимаемости природного газа (примеры расчета)

Д.1 Модифицированный метод NX19

Исходные данные (заданные параметры)

Значение

минимальное

максимальное

погрешности, %

Давление, МПа

1,991

2,011

1,00

Температура, К

269,50

270,50

0,35

Плотность, кг/м3 (0,101325 МПа, 293,15 К)

0,6790

0,6808

0,25

Содержание, мол. %:

азота (N2)

0,8769

0,8947

2,00

диоксида углерода (СО2)

0,0661

0,0675

2,00

Коэффициент сжимаемости (среднее значение) - 0,9520

Погрешность расчета: по формуле (82) - 0,09 %; по формуле (86) - 0,07 %.

Д.2 Уравнение состояния GERG-91

Исходные данные (заданные параметры)

Значение

минимальное

максимальное

погрешности, %

Давление, МПа

1,991

2,011

1,00

Температура, К

269,50

270,50

0,35

Плотность, кг/м3 (0,101325 МПа, 293,15 К)

0,6790

0,6808

0,25

Содержание, мол. %:

азота (N2)

0,8769

0,8947

2,00

диоксида углерода (СО2)

0,0661

0,0675

2,00

Коэффициент сжимаемости (среднее значение) - 0,9521

Погрешность расчета: по формуле (82) - 0,09 %; по формуле (86) - 0,09 %.

Д.3 Уравнение состояния AGA8-92DC

Исходные данные (заданные параметры)

Значение

минимальное

максимальное

погрешности, %

Давление, МПа

1,991

2,011

1,00

Температура, К

269,50

270,50

0,35

Содержание, мол. %:

метана (СН4)

97,2722

99,2722

2,00

этана (С2Н6)

0,5030

0,5288

5,00

пропана (С3Н8)

0,1607

0,1607

-

н-бутана (н-С4Д10)

0,0592

0,0592

-

азота (N2)

0,8769

0,8947

2,00

диоксида углерода (СО2)

0,0661

0,0675

2,00

н-пентана (н-С5Н12)

0,0157

0,0157

-

н-гексана (н-С6Н14)

0,0055

0,0055

-

н-гептана (н-С7Н16)

0,0016

0,0016

-

н-октана (н-C8H18)

0,0009

0,0009

-

гелия (Не)

0,0157

0,0157

-

Коэффициент сжимаемости (среднее значение) - 0,9520

Погрешность расчета - 0,08 %

Д.4 Уравнение состояния ВНИЦ СМВ

Исходные данные (заданные параметры)

Значение

минимальное

максимальное

погрешности, %

Давление, МПа

1,076

1,086

1,00

Температура, К

322,65

323,65

0,31

Содержание, мол. %:

метана (СН4)

88,3700

90,1700

2,00

этана (С2Н6)

2,2030

2,3170

5,00

пропана (C3H8)

1,0600

1,0600

-

и-бутана (и-С4Н10)

0,0100

0,0100

-

азота (N2)

0,0396

0,0404

2,00

диоксида углерода (СО2)

4,2570

4,3430

2,00

сероводорода (H2S)

3,0500

3,0500

-

пропилена (С3Н6)

0,0100

0,0100

-

Коэффициент сжимаемости (среднее значение) - 0,9853

Погрешность расчета - 0,03 %

ПРИЛОЖЕНИЕ Е

(справочное)

Библиография

[1] Сычев В.В. и др. Термодинамические свойства метана. - М., Изд-во стандартов, 1979, 348 с

[2] Kleinrahm R., Duschek W., Wagner W. Measurement and correlation of the (pressure, density, temperature) relation of methane in the temperature range from 273.15 К to 323.15 К at pressures up to 8 MPa. - J. Chem. Thermodynamics, 1988, v.20, p.621-631

[3] Robinson R.L., Jacoby R.H. Better compressibility factors. - Hydrocarbon Processing, 1965,v.44,No.4,p.141-145

[4] Achtermann H.-J., Klobasa F.,Rogener H. Realgasfaktoren von Erdgasen. Teil I: Bestimmung von Realgasfaktoren aus Brechungsindex-Messungen. - Brennstoff-Warme-Kraft, 1982, Bd.34, No.5, s.266-271

[5] Achtermann H.-J., Klobasa F.,Rogener H. Realgasfaktoren von Erdgasen. Teil II: Bestimmung von Realgasfaktoren mit eener Burnett-Apparatur. - Brennstoff-Warme-Kraft, 1982, Bd.34, No.6, s.311-314

[6] Eubank Ph.T., Scheloske J., Hall K.R., Holste J.C. Densities and mixture virial coefficients for wet natural gas mixtures. - Journal of Chemical and Engineering Data, 1987, v.32, No.2, p.230-233

[7] Jaeschke М., Julicher H.P. Realgasfaktoren von Erdgasen. Bestimmung von Realgasfaktoren nach der Expansionsmethode. - Brennstoff-Warme-Kraft, 1984, Bd.36, No.11, s.445-451

[8] Jaeschke М. Realgasverhalten Einheitliche Berechnungsmoglichkeiten von Erdgas L und H. - Gas und Wasserfach. Gas/Erdgas, 1988, v.129, No.l, s.30-37

[9] Blanke W., Weiss R. pvT-Eigenschaften und Adsorptions- verhalten von Erdgas bei Temperaturen zwischen 260 К und 330 К mit Drucken bis 3 MPa. - Erdol-Erdgas-Kohle, 1988, Bd.104, H.10, s.412-417

[10] Samirendra N.B. et al Compressibility Isotherms of Simulated Natural Gases. - J. Chem. Eng. Data, 1990, v.35, No.l, p.35-38

[11] Fitzgerald M.P., Sutton C.M. Measurements of Kapuni and natural gas compressibility factors and comparison with calculated values. - New Zealand Journal of Technology, 1987, v.3, No.4, p.215-218

[12] Jaeschke М., Humphreys A.E. The GERG Databank of High Accuracy Compressibility Factor Measurements. GERG TM4 1990. - GERG Technical Monograph, 1990, 477 p

[13] Jaeschke М., Humphreys A.E. Standard GERG Virial Equation for Field Use. Simplification of the Input Data Requirements for the GERG Virial Equation - an Alternative Means of Compressibility Factor Calculation for Natural Gases and Similar Mixtures. GERG TM5 1991. - GERG Technical Monograph, 1991, 173 p

[14] ISO/TC 193 SC1 № 63. Natural gas - calculation of compression factor. Part 3: Calculation using measured physical properties

[15] ISO/TC 193 SC1 № 62. Natural gas - calculation of compression factor. Part 2: Calculation using a molar composition analysis

[16] ISO 5168:1978 International Standard. Measurement of fluid flow - Estimation of uncertainty of a flow-rate measurement

[17] VDI/VDE 2040, part 2, 1987. Calculation principles for measurement of fluid flow using orifice plates, nozzles and venturi tubes. Equations and formulas

[18] Jaeschke М. et al. High Accuracy Compressibility Factor Calculation for Natural Gases and Similar Mixtures by Use of a Truncated Virial Equation. GERG TM2 1988. - GERG Technical Monograph, 1988, 163 p