Нижеприведенные расчетные формулы применяют для случая [СНКПР - нижний концентрационный предел распространения пламени горючего газа или пара, % (об.)] и помещений в форме прямоугольного параллелепипеда с отношением длины к ширине не более 5.

Б.2.1. Расстояния XНКПР, YНКПР и ZНКПР рассчитывают по формулам

,(Б.5)

,(Б.6)

,(Б.7)

где К1 - коэффициент, принимаемый равным 1,1314 для горючих газов и 1,1958 для легковоспламеняющихся жидкостей;

К2 - коэффициент, равный 1 для горючих газов;

для легковоспламеняющихся жидкостей;

K3 - коэффициент, принимаемый равным 0,0253 для горючих газов при отсутствии подвижности воздушной среды; 0,02828 для горючих газов при подвижности воздушной среды; 0,04714 для легковоспламеняющихся жидкостей при отсутствии подвижности воздушной среды и 0,3536 для легковоспламеняющихся жидкостей при подвижности воздушной среды;

h - высота помещения, м.

??, l, b и С0 приведены в А.2.3.

При отрицательных значениях логарифмов расстояния XНКПР, YНКПР и ZНКПР принимают равными 0.

Б.2.2. Радиус Rб и высоту Zб, м, зоны, ограниченной НКПР газов и паров, вычисляют исходя из значений XНКПР, YНКПР и ZНКПР для заданного уровня значимости Q.

При этом Rб > XНКПР, Rб > YНКПР и Zб > h + Rб для ГГ и Zб > ZНКПР для ЛВЖ (h - высота источника поступления газа от пола помещения для ГГ тяжелее воздуха и от потолка помещения для ГГ легче воздуха, м).

Для ГГ геометрически зона, ограниченная НКПР газов, будет представлять цилиндр с основанием радиусом Rб и высотой hб = 2Rб при Rб h и hб = h + Rб при Rб > h, внутри которого расположен источник возможного выделения ГГ. Для ЛВЖ геометрически зона, ограниченная НКПР паров, будет представлять цилиндр с основанием радиусом Rб и высотой Zб = ZНКПР при высоте источника паров ЛВЖ h < ZНКПР и Zб = h + ZНКПР при h ZНКПР. За начало отсчета принимают внешние габаритные размеры аппаратов, установок, трубопроводов и т. п.

Б.2.3. Во всех случаях значения расстояний XНКПР, YНКПР и ZНКПР должны быть не менее 0,3 м для ГГ и ЛВЖ.

Примеры.

1. Определить размеры зоны, ограниченной НКПР паров, образующейся при аварийной разгерметизации аппарата с ацетоном, при работающей и неработающей общеобменной вентиляции.

Данные для расчета.

В центре помещения размером 40х40 м и высотой h = 3 м установлен аппарат с ацетоном. Аппарат представляет собой цилиндр с основанием диаметром dа = 0,5 м и высотой ha = 1 м, в котором содержится 25 кг ацетона. Расчетная температура в помещении tp = 30 °С. Плотность паров ацетона ??а при tp равна 2,33 кг/м3. Давление насыщенных паров ацетона pн при tр равно 37,73 кПа. Нижний концентрационный предел распространения пламени СНКПР = 2,7 % (об.). В результате разгерметизации аппарата в помещение поступит 25 кг паров ацетона за время испарения Т = 208 с. При работающей общеобменной вентиляции подвижность воздушной среды в помещении ?? = 0,1 м/с.

Расчет.

Допустимые значения отклонений концентраций ?? при уровне значимости Q = 0,05 будут равны: 1,27 - при работающей вентиляции; 1,25 - при неработающей вентиляции (?? = 0).

Предэкспоненциальный множитель С0 будет равен:

при работающей вентиляции

% (об.),

% (об.),

м3;

при неработающей вентиляции

% (об.).

Расстояния XНКПР, YНКПР и ZНКПР составят:

при работающей вентиляции

м,

м,

м;

при неработающей вентиляции

м,

м,

м.

Таким образом, для ацетона геометрически зона, ограниченная НКПР паров, будет представлять собой цилиндр с основанием радиусом Rб и высотой Zб = ha + ZНКПР, так как ha > ZНКПР;

при работающей вентиляции

Zб = 1 + 0,2 = 1,2 м, Rб = 9,01 м;

при неработающей вентиляции

Zб = 1 + 0,03 = 1,03 м, Rб = 10,56 м.

За начало отсчета принимают внешние габаритные размеры аппарата.

2. Определить размеры зоны, ограниченной НКПР газов, образующейся при аварийной разгерметизации газового баллона с метаном, при работающей и неработающей вентиляции.

Данные для расчета.

На полу помещения размером 13??13 м и высотой Hп = 3 м находится баллон с 0,28 кг метана. Газовый баллон имеет высоту hб = 1,5 м. Расчетная температура в помещении tр = 30 °С. Плотность метана ??м при tр равна 0,645 кг/м3. Нижний концентрационный предел распространения пламени метана СНКПР = 5,28 % (об.). При работающей общеобменной вентиляции подвижность воздушной среды в помещении ?? = 0,1 м/с.

Расчет.

Допустимые отклонения концентраций при уровне значимости Q = 0,05 будут равны: 1,37 при работающей вентиляции; 1,38 при неработающей вентиляции (?? = 0).

Предэкспоненциальный множитель С0 будет равен:

при работающей вентиляции

% (об.);

при неработающей вентиляции

% (об.).

Расстояния XНКПР, YНКПР и ZНКПР составят:

при работающей вентиляции

,

,

,

следовательно XНКПР = YНКПР = ZНКПР = 0;

при неработающей вентиляции

м,

м,

м.

Таким образом, для метана при неработающей вентиляции геометрически зона, ограниченная НКПР газов, будет представлять собой цилиндр с основанием радиусом Rб = 3,34 м и высотой hб = h + Rб =3 + 3,34 = 6,34 м. Ввиду того, что hб расчетное больше высоты помещения hп = 3 м, за высоту зоны, ограниченной НКПР газов, принимаем высоту помещения hб = 3 м.

ПРИЛОЖЕНИЕ В

(рекомендуемое)

МЕТОД РАСЧЕТА ИНТЕНСИВНОСТИ ТЕПЛОВОГО ИЗЛУЧЕНИЯ ПРИ ПОЖАРАХ ПРОЛИВОВ ЛВЖ И ГЖ.

B.1. Интенсивность теплового излучения q, кВт/м2, рассчитывают по формуле

q = Ef Fq ??, (B.1)

где Ef - среднеповерхностная плотность теплового излучения пламени, кВт/м2;

Fq - угловой коэффициент облученности;

?? - коэффициент пропускания атмосферы.

В.2. Ef принимают на основе имеющихся экспериментальных данных. Для некоторых жидких углеводородных топлив указанные данные приведены в таблице B.1.

Таблица B.1

Среднеповерхностная плотность теплового излучения пламени в зависимости от диаметра очага и удельная массовая скорость выгорания для некоторых жидких углеводородных топлив.

Топливо

Еf, кВт/м2, при d,

т, кг/(м2 с)

10

20

30

40

50

СПГ (метан)

220

180

150

130

120

0.08

СУГ (пропан-бутан)

80

63

50

43

40

0,1

Бензин

60

47

35

28

25

0,06

Дизельное топливо

40

32

25

21

18

0,04

Нефть

25

19

15

12

10

0,04

Примечание - Для диаметров очага менее 10 м или более 50 м следует принимать Ef такой же, как и для очагов диаметром 10 м и 50 м соответственно.

При отсутствии данных допускается Ef принимать равной 100 кВт/м2 для СУГ, 40 кВт/м2 для нефтепродуктов.

В.3. Рассчитывают эффективный диаметр пролива d, м, по формуле

,(В.2)

где S - площадь пролива, м2.

В.4. Рассчитывают высоту пламени Н, м, по формуле

,(В.3)

где т - удельная массовая скорость выгорания топлива, кг/(м2·с);

??в - плотность окружающего воздуха, кг/м3;

g - ускорение свободного падения, равное 9,81 м/с2.

В.5. Определяют угловой коэффициент облученности Fq по формуле

,(В.4)

где , (В.5)

где ,(В.6)

S1 = 2r/d (r - расстояние от геометрического центра пролива до облучаемого объекта),(В.7)

h = 2H/d;(B.8)

,(В.9)

B = (1 + S2)/(2S).(В.10)

В.6. Определяют коэффициент пропускания атмосферы ?? по формуле

?? = exp [-7,0·10-4 (r - 0,5d)].(В.11)

Пример - Расчет теплового излучения от пожара пролива бензина площадью 300 м2 на расстоянии 40 м от центра пролива.

Расчет.

Определяем эффективный диаметр пролива d по формуле (В.2)

м.

Находим высоту пламени по формуле (В.З), принимая

т = 0,06 кг/(м2·с), g = 9,81 м/с2 и ??в = 1,2 кг/м3:

м.

Находим угловой коэффициент облученности Fq по формулам (В.4) - (В.10), принимая r = 40 м:

h = 2 · 26,5/19,5 = 2,72,

S1 = 2 · 40/19,5 = 4,10,

A = (2,722 + 4,102 + 1)/(2 · 4,1) = 3,08,

B = (1 + 4,12)/(2 · 4,1) = 2,17,

.

Определяем коэффициент пропускания атмосферы ?? по формуле (В.11)

?? = exp [-7,0·10-4 (40 - 0,5 · 19,5)] = 0,979.

Находим интенсивность теплового излучения q по формуле (B.1), принимая Еf = 47 кВт/м2 в соответствии с таблицей B.1:

q = 47 · 0,0324 · 0,979 = 1,5 кВт/м2.

ПРИЛОЖЕНИЕ Г

(рекомендуемое)

МЕТОД РАСЧЕТА РАЗМЕРОВ ЗОН РАСПРОСТРАНЕНИЯ ОБЛАКА ГОРЮЧИХ ГАЗОВ И ПАРОВ ПРИ АВАРИИ.

Г.1. Сущность метода.

В настоящем приложении установлен порядок расчета изменения во времени концентрации газа в облаке при мгновенном выбросе и непрерывном истечении сжиженного углеводородного газа (СУГ), плотность которого больше плотности воздуха.

Г.1.1. Мгновенный выброс СУГ.

Г.1.1.1. Мгновенный выброс СУГ может происходить при повреждении резервуара или иного аппарата, в котором СУГ находится под давлением.

За счет внутренней энергии СУГ его массовая доля ?? мгновенно испаряется, образуя с капельками жидкости облако аэрозоля. За счет больших скоростей вихревых потоков происходит быстрое вовлечение в облако воздуха и быстрое испарение оставшейся части СУГ.

Массу воздуха Ма0, кг, мгновенно вовлекающуюся в облако для такого испарения, рассчитывают по формуле

,(Г.1)

где Мg - масса выброшенного СУГ, кг;

Сp.a - удельная теплоемкость воздуха, Дж/(кг·К);

Lg - удельная теплота парообразования СУГ, Дж/кг;

Ta - температура окружающего воздуха. К;

Tg - температура кипения СУГ при атмосферном давлении. К;

Хw - массовая доля водяных паров в воздухе;

Lw - удельная теплота парообразования воды, Дж/кг.

?? определяют из соотношения

,(Г.2)

где Сp.g - удельная теплоемкость СУГ, Дж/(кг·К).

Г.1.1.2. Принимают, что образовавшееся облако дрейфует по ветру со скоростью vd = 0,6vв (vв - скорость ветра) и имеет в начальный момент форму цилиндра, высота которого равна его радиусу. С течением времени высота облака уменьшается, а радиус растет.

Изменение во времени радиуса, высоты облака и концентрации газа в нем в этой фазе (называемой фазой падения) определяется путем решения методом Рунге-Кутта (реализованным в виде стандартной программы на ЭВМ) системы обыкновенных дифференциальных уравнений:

,

,

,(Г.3)

где Ма - масса воздуха в облаке, кг;

??а - плотность воздуха, кг/м3;

r - радиус облака, м;

а1, а2, а3, а4 - коэффициенты (а1 = 0,7, а2 = 0,5, а4 = 1,07, а3 = 0,3 для классов устойчивости А - В (классы устойчивости даны по Паскуиллу, таблица Г.1); 0,24 - для С - В; 0,16 - для E - F);

Ri - число Ричардсона, определяемое из соотношения ;

h - высота облака, м;

Т - температура облака, К;

Тgr - температура земной поверхности, К;

??g.a - плотность паровоздушного облака, кг/м3.

Таблица Г.1

Классы устойчивости атмосферы по Паскуиллу.

Класс по Паскуиллу

Типичная скорость ветра, м/с

Описание погоды

Вертикальный градиент температуры, К/м

А

1

Безоблачно

>>> 0,01

В

2

Солнечно и тепло

>> 0,01

С

5

Переменная облачность в течение дня

> 0,01

D

5

Облачный день или облачная ночь

?? 0,01

Е

3

Переменная облачность в течение ночи

< 0,01

F

2

Ясная ночь

Инверсия (отрицательный градиент)

Решением системы вышеуказанных уравнений являются зависимости Ма = Mа(t), Т = T(t), r = r(t).

Для решения системы уравнений необходимы дополнительные соотношения

??g.a = (Мa + Мg)/(Мa/??a + Мg/??g)(Тa/Т).(Г.4)

В качестве критерия окончания фазы падения принимают выполнение условия:

(??g.a - ??a)/ ??a < 10-3.(Г.5)

Зависимость h = h(t) находим из соотношения

.(Г.6)

Г.1.1.3. Когда плотность паровоздушного облака незначительно отличается от плотности воздуха (т. е. после окончания фазы падения), его движение определяется как фаза пассивной дисперсии и описывается процессами турбулентной диффузии.

Концентрацию газа в точке с координатами (х, у, z) в фазе пассивной дисперсии определяют из формулы

,(Г.7)

где ??y, ??z - среднеквадратичные отклонения, зависящие от величины хc – х0;

хc - координата центра облака в направлении ветра, м;

x0 - координата точки окончания фазы падения, м;

??y(хc – х0); ??z(хc – х0) зависят от класса устойчивости по Паскуиллу.

При хc = х0 принимается ??y 0 = r/2,14, ??z 0 = h/2,14;

при .

Г.1.2. Непрерывное истечение СУГ.

Для описания непрерывного истечения СУГ из резервуаров или иных аппаратов предполагается, что результирующая концентрация газа в паровоздушном облаке является суммой концентраций от отдельных элементарных газовых объемов и рассчитывается по формуле

,(Г.8)

где Qj = т??j - масса СУГ в j-м элементарном объеме, кг;

т - массовая скорость истечения СУГ, кг/с;

хj - координата центра j-го элементарного объема, м;

- среднеквадратичные отклонения распределения концентраций в j-м элементарном объеме, м

определяют аналогично ??y, ??z в Г.1.1.3.

Пример - Расчет динамики паровоздушного облака в открытом пространстве.

Для расчета динамики паровоздушного облака (движения в пространстве границы облака, определяемой НКПВ) принимается, что в некоторый момент времени t0 начинается истечение пропана с массовой скоростью 1,3 кг/с, скорость ветра составляет 1 м/с, градиент температуры составляет 0,667 К/м.