6.11. Все расходометрические измерения должны проводиться в период установившегося или квазиустановившегося режима фильтрации, при котором изменение расхода (дебита) скважины составляет не более 10% дебита наименее водообильного пласта, представляющего интерес в данном геологическом разрезе, а динамический уровень воды в скважине систематически изменяется на величину не более 1 ?? 2 см за период расходометрических измерений (4 ?? 6 ч) в скважине.

6.12. Для раздельного секционного опробования в скважине с помощью расходомера нескольких водоносных горизонтов должны применяться пакеры. В качестве элементов пакера могут использоваться футбольные камеры, камеры для легковых автомашин и т.п. В зависимости от решаемых задач пакер помещается между водоносными горизонтами. Воздух в камеру накачивается насосом через резиновый шланг до плотного прилегания камеры к стенке скважины и изоляции тем самым водоносных горизонтов.

6.13. В практике инженерно-геологических изысканий наиболее широко применяются расходомеры тахеометрического типа TCP 34??70М и TCP 34/70??3М. Другие виды приборов, позволяющие измерять осевой расход воды по скважине, практически не используются. При наличии в организации нескольких расходомеров рекомендуется использовать их в гирлянде.

6.14. Перед началом расходометрических измерений необходимо проверить работу расходомера. Для этого отворачивают хвостовик с серьгой и устанавливают крыльчатку, которая транспортируется отдельно. Крыльчатка крепится в кернах па корпусе шасси с сохранением продольного люфта не более 0,1 ?? 0,2 мм. Люфт регулируется микровинтом упора и фиксируется контргайкой. После установки крыльчатки в корпус прибора необходимо убедиться, что она свободно вращается, отсутствует биение и неплавное затухание, и затем уже завернуть хвостовик. Порог чувствительности воспринимающего элемента и регистратора должен обеспечивать фиксацию минимальных расходов, представляющих практический интерес.

6.15. Для определения потока необходимо использовать крыльчатку, имеющую на коллекторе прерывателя дополнительный более узкий контакт. За один оборот этой крыльчатки в схему поступают два разных импульса, по определенному чередованию которых определяют направление потока. Для записи импульсов целесообразно использовать регистратор Н-360, Н-381 или Н-361, станцию СК-1.

6.16. Гидравлическое сопротивление, создаваемое скважинным подбором, не должно вносить заметных искажений в заданный гидравлический режим исследуемых скважин. Габариты скважинных приборов должны удовлетворять условию использования его одновременно с производством других операций в скважине (откачка, налив).

6.17. Аппаратура расходометрических измерений должна обеспечивать возможность двухсторонней регистрации расхода потока и его направления по скважине, а также возможность проведения многократных измерении расхода потока при одном спуске прибора в скважину. Метрологические характеристики расходометрической аппаратуры при работе в восходящем и нисходящем потоках должны быть идентичны.

6.18. Для взятия отсчета необходимо обеспечить одновременный запуск счетчика и секундомера. Результаты счета в имп/мин, записанные в журнал, затем переводят в значения расхода в л/с, используя данные тарировки и коэффициенты; учитывают эксцентриситет расходомера и диаметр скважин.

6.19. Поправочные коэффициенты за диаметр скважины и эксцентриситет расходомера допускается определять один раз перед его эксплуатацией. Тарировку расходомера необходимо повторять после 150 ?? 200 ч работы или в случае замены какой-либо детали.

6.20. Тарирование расходомеров должно проводиться путем пропускания через измерительный элемент строго фиксируемого объема воды с одновременным замером скорости вращения крыльчатки. Для тарирования должны использоваться специальные приспособления (прил. 22).

7. МЕТОДИКА И ТЕХНИКА ПРОВЕДЕНИЯ ТЕРМОМЕТРИИ СКВАЖИН

7.1. При инженерно-геологических и гидрогеологических изысканиях измерения температур в скважинах проводятся с целью решения различных задач.

В области распространения грунтов с отрицательной температурой:

определение температурного режима грунтов в естественных и нарушенных мерзлотно-грунтовых условиях;

определение температурного режима грунтов в процессе проведения специальных опытных работ.

В области распространения грунтов с положительной температурой:

определение температурного режима водонасыщенных и текучепластичных грунтов с целью создания "мерзлотных завес" для производства подземных строительных работ (тоннели, шахты).

При проведении гидрогеологических изысканий:

определение в процессе стабильной откачки местоположения водоносных горизонтов в разрезе по данным температурных измерений;

определение температурного режима воды по стволу скважины при стабильном режиме налива с целью определения фильтрационных характеристик грунтов;

определение температурных свойств слоев разреза по градиент-термограммам;

определение температуры воды по стволу скважины при оценке минерализации подземных вод по данным резистивиметрии.

7.2. Температуру в "сухих" инженерно-геологических скважинах измеряют медными (ТСМ) и полупроводниковыми термометрами сопротивления (КМТ, ММТ), ртутными ленивыми термометрами, термодиодами и термотранзисторами (КТ301) с прижимным устройством.

В гидрогеологических и инженерно-геологических скважинах, заполненных водой или фильтратом промывочной жидкости, температурные измерения проводят специальными электротермометрами (ЭТМИ, ЭТС2, ЭСО-2, ЭТО-2,СТТ-1, ТЭТ-2, ТЭГ-36).

7.3.Естественный температурный режим грунтов следует определять при условии полной выстойки скважины.

При бурении инженерно-геологических скважин в мерзлых грунтах, предназначенных для изучения их температурного режима, не допускается промывка, подлив воды или глинистого раствора, а также использование солевых растворов. Бурение скважин производится при наименьшей скорости вращения бурового снаряда укороченными рейсами (0,2 ?? 0,3 м).

Ориентировочное время выстойки таких скважин до начала термокаротажных работ составляет:

при ручном бурении до глубины 12 - 15 м — 5 - 10 сут;

то же до глубины 20 - 25 м — 12 - 15 сут;

при механическом колонковом бурении до глубины 12 - 15м — 12 - 15 сут;

то же до глубины 20 - 25 м — 25 - 30 сут.

При бурении скважин в крупнообломочных и скальных мерзлых грунтах время их выстойки увеличивается в 1,5 раза.

7.4. Инженерно-геологические скважины, предназначенные для температурных режимных или разовых наблюдений, оборудуют после окончания бурения следующим образом:

а) в обсаженную скважину до забоя вводят специальные трубы с минимально возможным диаметром и с запаенным нижним отверстием (в зависимости от диаметра термозонда, термокосы). Специальные трубы рекомендуется изготовлять из винипласта или полиэтилена. После ввода специальных труб в скважину обсадные трубы извлекают. Затрубное пространство специальных труб необходимо тщательно засыпать сухим песком или глинисто-цементным раствором;

б) специальные трубы должны быть выше устья скважины на 0,3 ?? 0,5 м;

в) в целях максимального предотвращения циркуляции воздуха в скважине и попадания в нее влаги в специальную трубу вводят деревянный стержень длиной не менее высоты оголовка и диаметром чуть меньше внутреннего диаметра оголовка. На верхнем конце деревянного стержня укрепляют крышку для плотного прикрытия верхнего отверстия оголовка;

г) в течение всего времени проведения термометрических измерений естественные условия на поверхности грунта у скважины должны сохраняться в радиусе, равном ее глубине.

7.5. Скважина является выстоявшейся, если при трех измерениях температуры, производимых подряд с интервалом 1 сут, разница в измеренных температурах на глубине свыше 5м не превышает ?? 0,1??С.

Бремя выстойки гидрогеологических скважин, заполненных буровым раствором или водой, определяется из соотношения

где ?? ?? время выдержки скважины в покое;

??t0 ?? разность температур фильтрата промывочной жидкости в скважине и окружающих породах в начальный момент времени;

??t — то же по истечении времени выстойки;

d — диаметр скважины;

а — температуропроводность среды.

7.6. Термометры в режимных инженерно-геологических скважинах устанавливают следующим образом: в интервале глубин от 0 до 5 м ?? через каждые 0,5м; то же от 6 до 20 м ?? через каждые 1 м; на глубинах свыше 20 м — через каждые 5 м.

7.7. Продолжительность времени от момента установки термометров (датчиков) в "сухих" инженерно-геологических скважинах до начала измерения температуры должна быть не менее 3 ч, что связано с их большими значениями постоянной времени.

7.8. Для проведения термометрии инженерно-геологических скважин ртутные ленивые термометры объединяются в связки, причем в одной связке должно быть не более пяти термометров.

Термометры сопротивления (медные, полупроводниковые) объединяются в комплекты (косы).

Весьма перспективным является использование малоинерционного микротермотранзисторного датчика совместно с прижимным устройством. Этот прибор позволяет использовать только один датчик, резко повысить производительность термометрии "сухих" скважин, увеличить точность регистрации температуры, измерять температуру в любой интересующей точке, создать необходимые условия без термостатирования.

7.9. Показания датчиков должны быть высокостабильными в течение продолжительного времени эксплуатации. Высокостабильные датчики градуируются один раз в три месяца.

Для высокостабильного термотранзисторного датчика не требуется градуировочная таблица. При эксплуатации данного датчика требуется определение цены деления стрелочного индикатора в град. С. Определение цены деления в град. С и поправки к 0?? С необходимо проводить один раз в три месяца.

7.10. Для определения температуры различных слоев разреза в гидрогеологических скважинах следует применять метод дифференциального измерения с регистрацией градиент-термограмм. Такой метод существенно повышает чувствительность температурных измерений до 0,004град/см.

Градиент-термометры состоят из двух термосопротивлений, расположенных на фиксированном расстоянии друг от друга, образующих два плеча мостиковой схемы.

7.11. Температурную кривую в гидрогеологических скважинах записывают только при спуске термометра, при этом скорость перемещения его должна быть постоянной. При подъеме допускается проводить лишь контрольные измерения температур.

7.12. Скорость перемещения термометра в скважине зависит от постоянной времени прибора. Ниже приводятся допустимые скорости перемещения термометров с разными постоянными:

постоянная времени, с ?? 0,5; 0,5 - 1; 1 - 2; 2 - 4; свыше 4;

допустимая скорость, м/ч — 1000, 800, 600, 400, 300.

7.13. Термометр (терморезистор) градуируют не реже одного раза в три месяца.

В области положительных температур термометры (терморезисторы) градуируют в термостате (ванне), заполненном водой. Воду при нагревании перемешивают, чтобы обеспечить в объеме равномерную температуру. Температуру контролируют ртутным термометром с ценой деления не менее 0,1??С.

В области отрицательных температур (от 0 до -20??С) градуировку проводят в сосуде со смесью "вода-лед-поваренная соль". Сосуд с термометрами (терморезисторами) помещают в холодильник. Температуру смеси контролируют двумя-тремя ртутными термометрами с ценой деления не менее 0,1 С. В этом случае погрешность градуировки обеспечивается не более ?? 0,05??С.

7.14. Для термометров с мостовой схемой в скважинном приборе (термометр для работы с трехжильным кабелем) при градуировке определяют отношение напряжения в измерительной диагонали моста ??U к силе тока питания J его при различных температурах t??. По результатам градуировки строят кривую . Пересечение ее с ординатой дает нулевую температуру Т0, при которой мост сбалансирован и показание регистрирующего прибора равно нулю. Угловой коэффициент, рассчитываемый по кривой, определяет постоянную термометра ?? в градусах на 1 см.

При нелинейной зависимости график используют для определения шкалы термограммы.

7.15. Для каждого типа и экземпляра термометра (терморезистора) должна быть определена постоянная времени (тепловая инерция) ??, в течение которой прибор воспримет 0,63 разности температур измеряемых сред.

Для определения ?? берут два сосуда, заполненных водой с температурой Т1 и Т2, отличающейся приблизительно на 10??С. Последовательно проводят измерения t сначала в одном Т1, а затем в другом Т2 сосуде. Время, затраченное на установление 0,63 разности температур ??Т = 0,63 (Т2 -Т1)??, и определит величину ??.

7.10. Для повышения точности измерения температур рекомендуется сочетать непрерывную запись термограммы с точечными наблюдениями на заранее определенных интервалах (глубинах). При этом замеры в каждой точке наблюдения должны выполняться неоднократно через каждые 5 ?? 10 с. Погрешность дискретного измерения не должна превышать 0,05 ?? 0,1??С.

7.17. Если температурные измерения проводят в комплексе с другими видами каротажа, то на скважине сначала записывают температурную кривую, а затем другие в последовательности, определенной программой работ.

7.18. Стандартными масштабами глубин термограмм являются 1:200 и 1:50, масштаб записи не более 1??С на 1 см, реже 0,25 ?? 0,5??С на 1 см бумаги. Допустимая погрешность в определении абсолютного значения температур 0,5 ?? 1??. При точечных измерениях температуры все необходимые данные записывают в журнал полевых наблюдений.

7.19. При определении термометрией поглощающих (отдающих) пластов и мест затрубной циркуляции в гидрогеологии применяется метод оттартывания и метод продавливания. Выбор метода зависит от оборудования скважины. При большом поглощении рекомендуется пользоваться методом продавливания.

7.20. Метод оттартывания применяется после предварительной промывки скважины (при неустановившемся тепловом режиме). Контрольный замер должен подтвердить отсутствие на термограмме резких аномалий.