де λi,t – значення параметра інтенсивності відмов елемента в стані i для часу t=1;

ti – час (в роках), що пройшов від початку експлуатації до стану i.

Г.4 3 достатньою для практики точністю значення параметра інтенсивності відмов елемента можна знайти за номограмами, наведеними на рисунку Г.1, які містять криві, що описуються рівнянням (6.1). На графік нанесено 12 кривих, які побудовано для значень параметра λ, наведених у таблиці Г.2. Для проміжних значень можна скористатися лінійною інтерполяцією.

Таблиця Г.1 – Значення параметра інтенсивності відмов λi,t для t = 1

Стан

Надійність елемента в i-му стані Pt

Характеристика безпеки в i-му стані βt

Параметр інтенсивності відмов λi,t

1

2

3

4

2

0,9984

2,95

0,8525

0,9975

2,81

0,9506

0,9963

2,68

1 ,0484

0,9946

2,55

1,1552

3

0,9925

2,43

1,2597

0,9898

2,32

1,3693

0,9868

2,22

1,4715

0,9834

2,13

1,5715

4

0,9798

2,05

1,6657

0,9756

1,97

1,7642

0,9706

1,89

1,8706

0,9648

1,81

1,9835

5

0,9584

1,74

2,0987

Визначення залишкового ресурсу

Г.5 Із рівняння деградації елемента (6.1) за відомою надійністю елемента в стані n – Рt,n та визначеним на попередньому кроці параметром інтенсивності відмов елемента λe знаходиться час Тn, який прогнозується, що пройде від початку експлуатації елемента до стану n . У випадку n = 5 час Тn буде прогнозуванням залишкового ресурсу.

У таблиці Г.2 наведено розв'язок рівняння (6.1) для фіксованих значень інтенсивності відмов елемента λe. Для проміжних значень λe розв'язок знаходиться за лінійною інтерполяцією. Значення ресурсу (в роках) у таблиці Г.2 округлені до цілого числа.

Г.6 3 достатньою для практики точністю значення часу, що прогнозується, від початку експлуатації до стану n можна знайти за номограмами рисунка Г.1. Номограми побудовані за рівнянням (6.1) для фіксованих значень параметра інтенсивності відмов, наведених в таблиці Г.3.

Таблиця Г.2 – Залишковий ресурс елементів

Інтенсивність відмов, λe

Ресурс від початку експлуатації до досягнення верхнього рівня, років

Стану 2

Стану 3

Стану 4

Стану 5

1

2

3

4

5

0,080

11

16

21

26

0,075

11

17

22

28

0,070

12

18

24

30

0,065

13

19

26

32

0,060

14

21

28

35

0,055

16

23

30

38

0,050

17

25

33

42

0,045

19

28

37

47

0,040

21

31

42

52

0,038

22

33

44

55

0,035

24

36

48

60

0,032

27

39

52

66

0,030

28

42

56

70

0,028

30

45

60

74

0,025

34

50

67

84

0,022

39

57

76

95

0,020

42

63

83

105

0,018

47

70

92

117

0,017

50

74

98

123

0,016

53

79

104

131

0,015

57

84

111

140

Таблиця Г.3 – Значення параметра λ до номограм рисунка Г.1

λ

0,08

0,07

0,06

0,05

0,04

0,035

0,03

0,025

0,022

0,02

0,018

0,015

Процес із відновленням

Г.7 Модель деградації (6.1) також узагальнюється на випадок процесу з відновленням, тобто на випадок ремонту, який повертає елемент із стану i до вищого стану j < і. У цьому випадку за алгоритмом, який наведено вище, обчислюється нове значення параметра інтенсивності відмов λj < λi, що відповідає новим фізико-механічним властивостям елемента, які описуються іншою деградаційною кривою (рисунок Г.2) з ресурсом Tp,j > Tp,i.

Г.8 Для випадку відновлення вихідними даними для визначення залишкового ресурсу елемента є:

а) визначена за класифікаційною таблицею надійність елемента Pi у стані до відновлення та час ti що пройшов від початку експлуатації, до стану i;

Pt – надійність; β – характеристика безпеки; λ – інтенсивність відмов.

Рисунок Г.1 – Номограми визначення остаточного ресурсу

б) визначена за класифікаційною таблицею надійність елемента Pk у стані k після відновлення, k < і.

Очевидно, що в цьому випадку Pk > Pt. (Видимо, должно біть Pk > Pi ??)

Г.9 Алгоритм визначення залишкового ресурсу складається з двох кроків.

Крок 1

На першому кроці із рівняння деградації елемента (6.1) за відомою надійністю елемента після відновлення Pk та параметром інтенсивності відмов елемента до відновлення λ визначається віртуальний строк служби елемента Tv від початку експлуатації до стану k.

Рисунок Г.2 – Перехід елемента у вищий дискретний стан

Приблизне значення віртуального часу Tv при відомому параметрі інтенсивності відмов елемента λ та надійності Pk можна знайти за номограмами, наведеними на рисунку Г.1.

Крок 2

На другому кроці вираховується приріст строку служби (ресурсу), отриманий у результаті відновлення:

де ti – дійсний час, що пройшов від початку експлуатації, до стану i.

З урахуванням отриманого приросту строку служби ресурс елемента після відновлення становить:

де Тi – ресурс, обчислений для елемента в стані i (до відновлення)

Г.10 Після відновлення елемент має отримати нове значення параметра інтенсивності відмов λ. Процедура його визначення є наступною. Із рівняння деградації елемента (6.1) за відомими ресурсом Tres та надійністю елемента в стані 5 – Р5 знаходиться новий параметр інтенсивності відмов елемента λ1. Очевидно, що отриманий параметр λ1 < λ. Наближене значення параметра інтенсивності відмов елемента λ1 можна знайти за номограмами, наведеними на рисунку Г.1. Саме це значення в подальшому є паспортною характеристикою деградації елемента.

Код УКНД 93.040

Ключові слова: оцінка технічного стану, прогноз технічного стану, залишковий ресурс, вантажопідйомність, характеристика безпеки.