1.2. Расчет
Возникновение взрыва в компрессоре обусловлено одновременным появлением в цилиндре горючего газа, окислителя и источника зажигания.
По условиям технологического процесса в цилиндре компрессора постоянно обращается этилен, поэтому вероятность появления в компрессоре горючего газа равна единице
Появление окислителя (воздуха) в цилиндре компрессора возможно при заклинивании всасывающего клапана. В этом случае в цилиндре создается разряжение, обуславливающее подсос воздуха через сальниковые уплотнения. Для отклонения компрессора при заклинивании всасывающего клапана имеется система контроля давления, которая отключает компрессор через 10 с после заклинивания клапана. Обследование показало, что за год наблюдалось 10 случаев заклинивания клапанов. Тогда вероятность разгерметизации компрессора равна
Анализируемый компрессор в течение года находился в рабочем состоянии 4000 ч, поэтому вероятность его нахождения под разряжением равна
Откуда вероятность подсоса воздуха в компрессор составит значение
Таким образом, вероятность появления в цилиндре компрессора достаточного количества окислителя в соответствии с формулой (44) приложения 3 равна
Откуда вероятность образования горючей среды в цилиндре компреcсора соответствии с формулой (40) приложения 3 будет равна
Источником зажигания этиленовоздушной смеси в цилиндре компрессора могут быть только искры механического происхождения, возникающие при разрушении узлов и деталей поршневой группы из-за потери прочности материала или при ослаблении болтовых соединений.
Статистические данные показывают, что за анализируемый период времени наблюдался один случай разрушения деталей поршневой группы, в результате чего в цилиндре компрессора в течение 2 мин наблюдалось искрение. Поэтому вероятность появления в цилиндре компрессора фрикционных искр в соответствии с формулами (42 и 47) приложения 3 равна
Оценим энергию искр, возникающих при разрушении деталей поршневой группы компрессора. Зная, что скорость движения этих деталей составляет 20 м⋅c-1, а их масса равна 10 кг и более, найдем энергию соударения (Е), Дж, по формуле
Известно, что фрикционные искры твердых сталей при энергиях соударения порядка 1000 Дж поджигают метановоздушные смеси с минимальной энергией зажигания 0,28 мДж.
Минимальная энергия зажигания этиленовоздушной смеси равна 0,12 мДж, а энергия соударения тел значительно превышает 1000 Дж, следовательно:
Тогда вероятность появления в цилиндре компрессора источника зажигания в соответствии с формулой (46) приложения 3 равна
Таким образом, вероятность взрыва этиленовоздушной смеси внутри компрессора будет равна
Наблюдение за производством показало, что трижды за год (m-3) отмечалась разгерметизация коммуникаций с этиленом и газ выходил в объем помещения. Рассчитаем время образования взрывоопасной концентрации в локальном облаке, занимающем 5% объема цеха.
Режим истечения этилена из трубопровода при разгерметизации фланцевых соединений вычисляют из выражения
где Ратм — атмосферное давление, Па;
Pраб — рабочее давление в трубопроводах с этиленом, Па;
vкр — критическое отношение.
То есть истечение происходит со звуковой скоростью w, равной
Площадь щели F при разгерметизации фланцевого соединения трубопровода диаметром 150 мм и толщиной щели 0,5 мм равна
Расход этилена — g через такое отверстие будет равен
Тогда время образования локального взрывоопасного облака, занимающего 5% объема цеха при работе вентиляции, будет равно
Учитывая, что из всей массы этилена, вышедшего в объем помещения, только 70% участвуют в образовании локального взрывоопасного облака, время образования этого облака и время его существования после устранения утечки этилена будет равно:
Время истечения этилена при имевших место авариях за анализируемый период времени было равно 4,5, 5 и 5,5 мин. Тогда общее время существования взрывоопасного облака, занимающего 5% объема помещения и представляющего опасность при взрыве для целостности строительных конструкций и жизни людей с учетом работы аварийной вентиляции будет равно
Откуда вероятность появления в объеме помещения, достаточного для образования горючей смеси количества этилена, равна
Учитывая, что в объеме помещения постоянно имеется окислитель, получим
Тогда вероятность образования горючей смеси этилена с воздухом в объеме помещения будет равна
Основными источниками зажигания взрывоопасного этиленовоздушного облака в помещении могут быть электроприборы (в случае их несоответствия категории и группе взрывоопасной среды), открытый огонь (при проведении огневых работ), искры от удара (при различных ремонтных работах) и разряд атмосферного электричества.
Пожарно-техническим обследованием отделения компрессии установлено, что пять электросветильников марки ВЗГ в разное время в течение 120, 100, 80, 126 и 135 ч эксплуатировались с нарушением щелевой защиты.
Вероятность нахождения электросветильников в неисправном состоянии равна
Так как температура колбы электролампочки мощностью 150 Вт равна 350 °С, а температура самовоспламенения этилена 540 °С, следовательно, нагретая колба не может быть источником зажигания этиленовоздушной смеси.
Установлено, что за анализируемый период времени в помещении 6 раз проводились газосварочные работы по 6, 8, 10, 4, 3 и 5 ч каждая. Поэтому вероятность появления в помещении открытого огня будет равна
Так как температура пламени газовой горелки и время ее действия значительно превышают температуру воспламенения и время, необходимое для зажигания этиленовоздушной смеси, получаем, что
Ремонтные работы с применением искроопасного инструмента в помещении за анализируемый период времени не проводились.
Вычисляем вероятность появления в помещении разряда атмосферного электричества.
Помещение расположено в местности с продолжительностью грозовой деятельности 50 с⋅год-1, поэтому п = 6 км-2⋅год-1. Отсюда, в соответствии с формулой (5) приложения 3 число ударов молнии в здание равно
Тогда вероятность прямого удара молнии будет равна
Вычисляем вероятность отказа исправной молниезащиты типа Б здания компрессорной по формуле (52) приложения 3
Таким образом, вероятность поражения здания молнией равна
Пожарно-техническим обследованием установлено, что защитное заземление, имеющееся в здании, находится в исправном состоянии, поэтому
Тогда
Учитывая параметры молнии получим
Откуда
Таким образом, вероятность взрыва этиленовоздушной смеси в объеме помещения будет равна:
Рассчитаем вероятность возникновения пожара в помещении компрессорной. Наблюдение за объектом позволило установить, что примерно 255 ч⋅год-1 в помещении компрессорной, в нарушение правил пожарной безопасности, хранились разнообразные горючие материалы (ветошь, деревянные конструкции, древесные отходы и т.п.), не предусмотренные технологическим регламентом.
Поэтому вероятность появления в помещении горючих веществ равна
Откуда вероятность образования в цехе пожароопасной среды равна
Из зафиксированных тепловых источников, которые могут появиться в цехе, источником зажигания для твердых горючих веществ является только открытый огонь и разряды атмосферного электричества. Поэтому вероятность возникновения в отделении компрессии пожара равна
Таким образом, вероятность того, что в отделении компрессии произойдет взрыв либо в самом компрессоре, либо в объеме цеха составит значение
.
Вероятность того, что в компрессорной возникнет пожар или взрыв, равна:
1.3. Заключение
Вероятность возникновения в компрессорной взрыва равна 2,7⋅10-7 в год, что соответствует одному взрыву в год в 3703704 аналогичных зданиях, а вероятность возникновения в нем или взрыва, или пожара равна 1,9⋅10-4 в год, т. е. один пожар или взрыв в год в 5263 аналогичных помещениях.
2. Рассчитать вероятность возникновения пожара в резервуаре РВС-20000 НПС “торголи”
2.1. Данные для расчета
В качестве пожароопасного объекта взят резервуар с нефтью объемом 20000 м3. Расчет ведется для нормальной эксплуатации технически исправного резервуара.
Средняя рабочая температура нефти Т=311 К. Нижний и верхний температурные пределы воспламенения нефти равны: Тн.п.в=249 К, Тв.п.в=265 К. Количество оборотов резервуара в год Поб=24 год-1. Время существования горючей среды в резервуаре при откачке за один оборот резервуара τотк=10 ч (исключая длительный простой). Радиус резервуара РВС=2000 R=22,81 м. Высота резервуара Hр=11,9 м. Число ударов молний п = 6 км-2⋅год-1. На резервуаре имеется молниезащита типа Б, поэтому βб=0,95.
Число искроопасных операций при ручном измерении уровня Nз.у = 1100 год-1. Вероятность штиля (скорость ветра и≤1 м⋅с-1), Qш (u≤1) = 0,12. Число включений электрозадвижек Nэ.з=40⋅год-1. Число искроопасных операций при проведении техобслуживания резервуара NТ.О=24 год-1. Нижний и верхний концентрационные пределы воспламенения нефтяных паров Си.к.п.в=0,02% (по объему), Си.к.п.в=0,1% (по объему). Производительность, операции наполнения g=0,56 м3⋅c-1. Рабочая концентрация паров в резервуаре С=0,4% (по объему). Продолжительность выброса богатой смеси τбог=5 ч.
2.2.Расчет
Так как на нефтепроводах средняя рабочая температура жидкости (нефти) выше среднемесячной температуры воздуха, то за расчетную температуру поверхностного слоя нефти принимаем .
Из условия задачи видно, что >в.к.п.в, поэтому при неподвижном уровне нефти вероятность образования горючей cмеси внутри резервуара равна нулю (ГС)=0, а при откачке нефти равна
.
Таким образом вероятность образования горючей среды внутри резервуара в течение года будет равна
.
Вычислим число попадании молнии в резервуар то формуле (5.1) приложения 3
.
Тогда вероятность прямого удара молнии в резервуар в течение года, вычисленная по формуле (49) приложения 3, равна
.
Вычислим вероятность отказа молниезащиты в течение года при исправности молниеотвода по формуле (52) приложения 3.
Таким образом, вероятность поражения молнией резервуара, в соответствии с формулой (48) приложения 3, равна
Обследованием установлено, что имеющееся на резервуаре защитное заземление находится в исправном состоянии, поэтому вероятность вторичного воздействия молнии на резервуар и заноса в него высокого потенциала равна нулю
Появление фрикционных искр в резервуаре возможно только при проведении искроопасных ручных операций при измерении уровня и отборе проб. Поэтому вероятность Qр(ТИ3) в соответствии с формулами (49 и 55) приложения 3 равна
В этой формуле Q(ОП) = 1,52⋅10-3 — вероятность ошибки оператора, выполняющего операции измерения уровня.
Таким образом, вероятность появления в резервуаре какого-либо теплового источника в соответствии с приложением 3 равна
Полагая, что энергия и время существования этих источников достаточны для воспламенения горючей среды, т. е. Qр(B) = l из приложения 3 получим Qр (ИЗ/ГС) = 5,4⋅10-3.
Тогда вероятность возникновения пожара внутри резервуара в соответствии с формулой (38) приложения 3, равна
Из условия задачи следует, что рабочая концентрация паров в резервуаре выше верхнего концентрационного предела воспламенения, т.е. в резервуаре при неподвижном слое нефти находится негорючая среда. При наполнении резервуара нефтью в его окрестности образуется горючая среда, вероятность выброса которой можно вычислить по формуле (42) приложения 3
Во время тихой погоды (скорость ветра меньше 1 м⋅с-1) около резервуара образуется взрывоопасная зона, вероятность появления которой равна
Диаметр этой взрывоопасной зоны равен
Определим число ударов молнии во взрывоопасную зону
Тогда вероятность прямого удара молнии в данную зону равна
Так как вероятность отказа молниезащиты Qр(t1) = 5⋅10-2, то вероятность поражения молнией взрывоопасной зоны равна
Откуда Qв.з(ТИ1)=7⋅10-3.
Вероятность появления около резервуара фрикционных искр равна
Наряду с фрикционными искрами в окрестностях резервуара возможно появление электрических искр замыкания и размыкания контактов электрозадвижек. Учитывая соответствие пополнения электрозадвижек категории и группе взрывоопасной смеси, вероятность появления электрических искр вычислим по формулам (49 и 54) приложения 3.