8.4.3 Образцы бетона с арматурой до начала измерений насыщают питьевой водой.

8.4.4 На каждом образце проводят только одно измерение. Перед измерением откалывают бетон у торца образца так, чтобы арматурный стержень был обнажен на длине (20 ± 10) мм. Прилежащую к обнаженному стержню поверхность шириной (10 ± 5) мм и выступающую из бетона поверхность стального стержня шириной (10 ± 5) мм окрашивают расплавленной парафиновой мастикой.

8.4.5 Подготовленный образец устанавливают в емкость с питьевой водой так, чтобы верх бетонного образца возвышался над водой на 2-3 мм (см. рисунок 5). Измерение электрохимических характеристик необходимо проводить при температуре воды (25 ± 5) °С.

8.4.6 Измерение тока в микроамперах потенциодинамическим способом (см. рисунок 5а) проводят через (60 ± 5) мин после включения потенциостата. Снимают анодную часть поляризационной кривой со скоростью изменения потенциала 50 мВ/мин до потенциала плюс 1000 мВ с регистрацией силы тока через каждые 50 мВ.

8.4.7 Измерения гальванодинамическим способом (см. рисунок 5б) проводят на образце путем регистрации значения потенциала в милливольтах с помощью вольтметра. Гальванодинамические характеристики на образцах получают при изменении силы тока I ступенями 1, 2, 4, 8, 16, 30, 60, 120, 250, 500, 1000, 2000 мкА.

После каждого увеличения значения тока делают выдержку до стабилизации потенциала Е (изменение потенциала - не более 10 % текущего значения в минуту).

8.4.8 По завершении испытаний ток выключают и определяют значение потенциала через (60 ± 5) с после отключения тока.

8.4.9 После электрохимических испытаний стальные электроды извлекают из бетона и определяют наличие или отсутствие коррозионного поражения.

8.5 Обработка результатов

8.5.1 Площадь рабочей поверхности стального стержня, соприкасающуюся с бетоном, S, см2, рассчитывают по формуле

S = πDl + πD2, (15)

где D - диаметр стального стержня, см,

l - длина стального стержня, погруженного в бетон, см.

8.5.2 Рассчитывают плотность тока i, мкА/см2, при каждом фиксированном значении потенциала по формуле

(16)

где I - сила тока, мкА;

S - площадь рабочей поверхности, см2.

8.5.3 По полученным результатам строят график (поляризационную кривую) в координатах: по оси абсцисс - плотность тока i, мкА/см2, по оси ординат - потенциал рабочего электрода Е, мВ.

8.5.4 Коррозионное состояние стальной арматуры в бетоне определяют по показателям, приведенным в таблице 2.

Таблица 2 - Показатели коррозионного состояния стальной арматуры в бетоне

Показатель

Коррозионное состояние стальной арматуры

Плотность тока при потенциале плюс 300 мВ:


- до 10 мкА/см2 включительно

Пассивное состояние

- от 10 до 25 мкА/см2

Неустойчивое пассивное состояние

- св. 25 мкА/см2

Интенсивная коррозия

Потенциал через (60 ± 5) с после отключения тока:


- более +5 мВ

Пассивное состояние

- менее +5 мВ

Активное состояние, коррозия

Статистическая оценка результатов испытаний - по ГОСТ 8.207.

8.6 Протокол испытаний

Результаты испытаний оформляют протоколом, в котором указывают:

- наименование организации, проводившей испытания;

- фамилию исполнителя, проводившего испытания;

- дату испытаний;

- способ измерения;

- данные о составе и возрасте бетона, виде цемента, добавках, условиях твердения, других особенностях бетона;

- диаметр электродов и марку стали;

- результаты испытаний и оценку пассивирующего действия бетона.

9 Коррозионные испытания стальной арматуры в бетоне

9.1 Общие положения

9.1.1 Метод коррозионных испытаний стальной арматуры в бетоне является прямым методом и устанавливает характер коррозионных поражений стали в бетоне и массу корродированной стали. Метод распространяется на стальную арматуру и бетоны, приготовленные на цементе на основе портландцементного клинкера, в том числе на бетоны, содержащие в своем составе частицы, обладающие электропроводностью и способные образовывать со стальной арматурой гальванические пары (частицы угля, примеси металла в золе и шлаке, стальная фибра, шунгит и др.).

9.1.2 Метод испытаний основан на оценке характера и степени коррозионного поражения стальной арматуры при хранении образцов в условиях переменного увлажнения и высушивания и сравнении полученных результатов с установленными критическими значениями.

9.1.3 Метод коррозионных испытаний стальной арматуры в бетоне применяют для определения способности бетона защищать стальную арматуру от коррозии в чистой влажной атмосфере при обычном содержании в воздухе углекислого газа. Метод не распространяется на испытания стальной арматуры в бетоне в атмосфере, содержащей повышенное количество углекислого газа, а также в присутствии других агрессивных газов и аэрозолей.

9.2 Образцы

9.2.1 Бетонную смесь для образцов бетона готовят согласно заданной рецептуре. Из смеси формуют образцы размерами 70×70×140 мм. Если бетонная смесь содержит зерна заполнителя размером более 10 мм, то их отделяют из бетонной смеси на сите размером ячеек 10 мм. Из смеси формуют три образца без стержней и девять образцов, каждый с двумя стержнями из арматурной стали. Стержни устанавливают на растворные призмы, изготовленные из цементно-песчаного раствора того же состава, что и растворная часть испытуемого бетона. Толщина защитного слоя бетона должна быть (10 ± 2) мм.

9.2.2 Готовят 18 стальных стержней диаметром 3-6 мм и длиной 120 мм. Стержни маркируют, выбивая на их поверхности номер. Поверхность образцов, включая торцы стержня, шлифуют абразивной шкуркой до 7-го класса чистоты и перед укладкой в бетон обезжиривают ацетоном. Образцы взвешивают с точностью до 0,001 г.

9.2.3 Изготовленные бетонные образцы твердеют в условиях, соответствующих условиям твердения испытуемого бетона.

9.3 Аппаратура и материалы

Для проведения испытаний применяют:

- весы аналитические по ГОСТ 24104 с погрешностью взвешивания ± 0,0002 г;

- индикатор многооборотный с ценой деления 0,001 мм по ГОСТ 9696;

- линейку измерительную по ГОСТ 427 длиной 20-30 см;

- термометр с диапазоном измерений не менее 10 °С - 30 °С с делениями не более 1 °С;

- кислоту соляную по ГОСТ 3118 концентрации 10%;

- уротропин по ГОСТ 1381;

- бумагу фильтровальную по ГОСТ 12026;

- шкурку шлифовальную по ГОСТ 5009;

- нитрит натрия по ГОСТ 19906.

9.4 Проведение испытаний

9.4.1 По истечении 28 сут твердения образцы испытывают в режиме переменного увлажнения и высушивания в течение 3 и 6 мес.

9.4.2 Режим увлажнения и высушивания для каждого бетона - по 8.4.2.

9.4.3 Через 28 сут после изготовления, а также через 3 и 6 мес. хранения в условиях увлажнения и высушивания извлекают из бетона по три образца и оценивают характер коррозионного поражения арматуры и массу образцов.

9.4.4 При описании характера коррозионного поражения фиксируют площадь коррозионного поражения в % общей площади поверхности, наличие налета и/или слоистой ржавчины, язвенного поражения, глубину коррозионного поражения.

9.4.5 Продукты коррозии и остатки цементного камня на поверхности стальных стержней удаляют травлением в течение (25 ± 5) мин в 10 %-ном растворе соляной кислоты с добавлением 1 % ингибитора уротропина от массы соляной кислоты. После растворения продуктов коррозии стержни промывают дистиллированной водой и погружают на 5 мин в насыщенный раствор ингибитора нитрита натрия. Образцы извлекают из раствора, осушают поверхность фильтровальной бумагой и высушивают.

Образцы взвешивают с точностью 0,001 г.

9.4.6 Одновременно с испытуемыми стержнями в травильный раствор укладывают три аналогичных предварительно взвешенных, не подвергавшихся испытаниям контрольных стержня. По завершении травления основных образцов контрольные образцы также промывают, погружают на 5 мин в насыщенный раствор нитрита натрия, осушают тканью, высушивают и взвешивают.

9.4.7 Измеряют глубину коррозионного поражения стали с помощью индикатора по ГОСТ 9696 с иглой или микроскопом МИС-11. При использовании индикатора глубину коррозионного поражения стали оценивают как разность показаний прибора при установке иглы на неповрежденную поверхность и на участок с наибольшей глубиной поражения.

9.5 Обработка результатов испытаний

9.5.1 Рассчитывают площадь поверхности стального стержня, соприкасающуюся с бетоном S, см2, по формуле

S = πDl + 2πD2, (17)

где D - диаметр стального стержня, см;

l - длина стального стержня, см.

9.5.2 Рассчитывают среднюю потерю массы контрольных образцов в процессе травления. Для этого рассчитывают среднюю разность массы контрольных стержней до и после травления.

9.5.3 По результатам взвешивания испытуемых образцов до и после испытаний определяют потерю массы образцов за время испытаний. Полученные результаты корректируют с учетом потери массы стержней при травлении кислотой. Для этого из рассчитанной потери массы основных образцов вычитают среднее значение потери массы контрольных образцов.

9.5.4 По результатам коррозионных испытаний делают заключение о защитном действии бетона по отношению к стальной арматуре. Бетон обладает защитным действием по отношению к стальной арматуре, если после 6 мес. испытаний стальная арматура не имеет на поверхности налета ржавчины и коррозионных язв, а потеря массы - не превышает 10-3 г/см2 (10 г/м2).

9.5.5 Статистическая оценка результатов испытаний - по ГОСТ 8.207.

9.6 Протокол испытаний

Результаты испытаний оформляют в виде протокола, в котором указывают:

- наименование организации, проводившей испытания;

- фамилию исполнителя, проводившего испытания;

- дату испытаний;

- данные о составе и возрасте бетона, виде цемента, добавках, условиях твердения, других особенностях бетона;

- диаметр электродов и марка стали;

- результаты испытаний и оценку способности бетона защищать стальную арматуру от коррозии.

10 Метод определения стойкости арматурной стали к коррозионному растрескиванию

10.1 Общие положения

10.1.1 Метод определения стойкости арматурных сталей к коррозионному растрескиванию предназначен для использования при разработке новых видов арматуры, арматурных сталей, длительное время хранящихся на складах, образцов арматуры, отобранных при обследовании эксплуатируемых сооружений, оценки возможности применения химических добавок в бетон без опасности хрупкого разрушения арматуры и др. Настоящий метод может быть применен для целей сертификации арматуры.

10.1.2 Данный метод основан на выдержке нагруженных постоянной изгибающей нагрузкой образцов в горячем растворе азотнокислого кальция и аммония и определении времени до их разрушения.

10.2 Отбор и подготовка образцов

Испытания при каждом значении напряжения проводят не менее чем на трех образцах, отобранных от стержней в состоянии поставки. Длину образцов устанавливают с учетом того, что длина их контактирующей с раствором части должна быть не менее 200 мм.

Образцы маркируют, обезжиривают ацетоном или этиловым спиртом и протирают фильтровальной бумагой.

10.3 Аппаратура

Применяют рычажную установку консольного типа, обеспечивающую постоянную приложенную изгибающую нагрузку в течение всего периода испытаний с погрешностью не более 2 %. Схема установки приведена на рисунке 6.

1 - нагревательный элемент; 2 - плита с отверстиями для крепления испытуемого образца; 3 - рама для жесткой подвески плиты и устойчивости установки; 4 - испытуемый образец; 5 - емкость для коррозионного раствора; 6 - дозатор воды; 7 - рычаг; 8 - груз; L - горизонтальная проекция плеча действующей силы Р ; l - длина рычага; Р - сила, действующая на испытуемый образец, подвергая его изгибу

Рисунок 6 - Схема установки для испытаний арматуры на стойкость к коррозионному растрескиванию в условиях изгиба

10.4 Материалы, реактивы и растворы

Ацетон по ГОСТ 2603.

Спирт этиловый по ГОСТ Р 51999.

Кальций азотнокислый по ГОСТ 4142.

Аммоний азотнокислый по ГОСТ 22867.

Бумага фильтровальная по ГОСТ 12026.

Раствор для испытания: 600 массовых долей азотнокислого кальция и 50 массовых долей азотнокислого аммония растворяют в 350 массовых долях воды (см. ГОСТ 23732).

10.5 Проведение испытания

10.5.1 Испытания проводят в растворе при температуре 98 °С-100 °С.

Испытания стержней проводят при следующих уровнях напряжения в нагруженных волокнах R в зависимости от поставленных целей в долях от σ02: 0,95; 0,9; 0,8; 0,7; 0,6. Если испытуемые образцы не разрушаются в течение 200 ч при высоком уровне напряжения, то испытания при более низком уровне напряжения не проводят.

Для предварительного определения стойкости стержней против коррозионного растрескивания допускается проводить испытания при напряжении 0,9 σ02.

10.5.2 Изгибающий момент М, Н·м, вычисляют по формуле

M = RW, (18)

где W - момент сопротивления поперечного сечения образца, м3, вычисленный по формуле

(19)

где d - диаметр образца, м.

10.5.3 Значение действующей силы Р, Н, вычисляют по формуле

(20)

где L - горизонтальная проекция плеча силы, м.

10.5.4 Массу груза G, кг, вычисляют по формуле

(21)

где G0 - масса грузовой платформы и масса рычага, кг;

g - гравитационное ускорение, т·с-2.

После приложения груза массой G уточняют значение горизонтальной проекции плеча силы L и корректируют массу груза так, чтобы изгибающий момент соответствовал вычисленному по формуле (18).