Описание: спецификация требований к системе и программному обеспечению включает в себя требования к памяти и времени выполнения системой конкретных функций, возможно, объединенных с ограничениями на использование общих системных ресурсов.

Данный метод выполняется для определения распределения запросов при средних и наихудших условиях. Рассматриваемый метод требует оценки используемых ресурсов и затраченного времени каждой функцией системы. Такие оценки могут быть получены различными способами, например сравнением с существующей системой или макетированием и дальнейшим сравнением времени реакции с критическими системами.

С.5.23 Анализ влияния

Примечание - Ссылка на данный метод/средство приведена в МЭК 61508-3 (таблица А.8).

Цель: определение влияния, изменяющего или расширяющего программную систему, которому могут подвергаться также и другие программные модули в данной программной системе, а также другие системы.

Описание: перед выполнением модификации или расширения программного обеспечения следует определить влияние модификаций или расширений на программное обеспечение, а также определить, на какие программные системы и программные модули это повлияет.

Далее принимается решение о повторной верификации программной системы. Это зависит от числа, подвергнувшихся воздействию программных модулей, их критичности и характера изменений. Возможными решениями могут быть:

- повторная проверка только изменений программного модуля;

- повторная проверка вех, подвергнувшихся воздействию, программных модулей;

- повторная проверка всей системы.

Литература:

Dependability of Critical Computer Systems 2. F. J. Redmill, Elsevier Applied Science, 1989. ISBN 1-85166-381-9.

C.5.24 Управление конфигурацией программного обеспечения

Примечание - Ссылка на данный метод/средство приведена в МЭК 61508-3 (таблица А.8).

Цель: обеспечение согласованности результатов работы групп поставщиков проекта, а также изменений в этих поставках. В общем случае управление конфигурацией применимо к разработке как аппаратных, так и программных средств.

Описание: управление конфигурацией программных средств представляет собой метод, используемый в течение всей разработки. В сущности, он требует документирования разработки каждой версии каждой значимой ее поставки и каждой взаимосвязи между различными версиями разработки различных поставщиков. Полученная документация позволяет разработчику определять, как влияет на другие поставки изменение в первой поставке (особенно одного из его компонентов). В частности, системы или подсистемы могут надежно компоноваться (конфигурироваться) из согласованных наборов версий компонентов.

Литература:

Configuration Management Practices for Systems, Equipment, Munitions and Computer Programs. MIL-STD-483.

Software Configuration Management. J. K. Buckle. Macmillan Press, 1982. Software Configuration Management. W. A. Babich. Addison-Wesley, 1986.

Configuration Management Requirements for Defence Equipment. UK Ministry of Defence Standards 05-57 Issue 3, July 1993.

C.6 Оценка функциональной безопасности

Примечание - Соответствующие методы и средства см. также в В.6.

С.6.1 Таблицы решений и таблицы истинности

Примечание - Ссылка на данный метод/средство приведена в МЭК 61508-3 (таблицы А.10 и В.7).

Цель: обеспечение ясных и согласующихся спецификаций и анализа сложных логических комбинаций и их отношений.

Описание: данный метод использует бинарные таблицы для точного описания логических отношений между булевыми переменными программы.

Использование таблиц и точность метода позволили применить его в качестве средства анализа сложных логических комбинаций, выраженных в бинарных кодах.

Рассматриваемый метод достаточно легко автоматизируется, поэтому его можно использовать в качестве средства спецификации систем.

С.6.2 Исследование опасности и работоспособности (HAZOP)

Цель: определение угрозы безопасности в предлагаемой или существующей системе, их возможных причин и последствий и рекомендуемых действий по минимизации вероятности их появления.

Описание: группа специалистов в области создаваемой системы принимает участие в структурном анализе проекта системы путем ряда запланированных совещаний. Они рассматривают как реализацию функций проекта системы, так и способы работы системы на практике (включая действия персонала и процедуры эксплуатации системы). Руководитель группы специалистов инициирует ее участников создавать потенциальные опасности и управляет этой процедурой, описывая каждую часть системы в сочетании с отдельными ключевыми словами: «отсутствует», «более», «менее», «часть целого», «больше чем» (или «так же как и») и «иначе чем». Каждое применимое условие или режим отказа рассматривается с точки зрения реализуемости, причин возникновения, возможных последствий (появляется ли опасность), способа устранения и, в случае устранения, выбора наиболее целесообразного метода.

Затем часто возникает необходимость провести дальнейшее исследование опасностей (методом вероятностной или количественной оценки риска) с целью их более подробного рассмотрения.

Исследование опасностей может выполняться на разных стадиях разработки проекта, однако наиболее эффективным такое исследование может быть на начальных стадиях с тем, чтобы как можно раньше повлиять на основные решения по проектированию и работоспособности. Полезно в графике выполнения проекта определить фиксированное время для совещаний длительностью не менее половины дня и не более четырех раз в неделю с тем, чтобы рассматривать весь поток сопроводительной документации. Сопроводительная документация, выработанная на совещаниях, должна составлять существенную часть досье об опасности/безопасности системы.

Метод HAZOP создавался для производственных процессов и без модификации его сложно применить к программным элементам PES. Были предложены различные производные методы PES HAZOP (или Computer HAZOPs-«CHAZOPs»), которые сопровождались новыми руководящими материалами и/или реализовывали способы систематического охвата системной и программной архитектур.

Литература:

Draft Interim Defence Standard 00-58/1: «A Guide to HAZOP Studies on Systems which Incorporate a Programmable Electronic System». Ministry of Defence (UK). March 1995.

Hazard and Operability (HAZOP) studies applied to computer-controlled process plants. P. Chung and E. Broomfield. In «Computer Control and Human Error by T. Kletz, Institution of Chemical Engineers, 165-189 Railway Terrace, Rugby, CV1 3HQ, UK, 1995, ISBN 0-85295-362-3.

Reliability and Hazard Criteria for Programmable Electronic Systems in Chemical Industry. E. Johnson. Proc. of Safety and Reliability of PES, PES 3 Safety Symposium, B. K. Daniels (ed.), 28-30 May 1986, Guernsey Channel Islands, Elsevier Applied Science, 1986.

HAZOP and HAZAN. T. A. Kletz. Institution of Chemical Engineers, 165-189 Railway Terrace, Rugby, CV1 3HQ, UK, 3rd Edition, 1992, ISBN 0-85295-285-6.

A Guide to HAZOPS. Chemical Industries Association Ltd, 1977.

Reliability Engineering and Risk Assessment. E. J. Henlty and H. Kumamoto, Prentice-Hall, 1981.

Systems Reliability and Risk Analysis (Engineering Application of Systems Reliability and Risk Analysis), E. G. Frenkel, Kluwer Academic Pub., May 1988, ISBN 90-2473-665X.

Control Hazard Studies for Process Plants. K. Walters, in Integrated Risk Assessment-Current Practice and New Directions, edited by R. E. Melchers and M. G. Stewart, The University of Newcastle, NSW Australia. A. A. Balkema Publishers, Rotterdam Netherlands 1995, ISBN 90-5410-5550.

C.6.3 Анализ отказов по общей причине

Примечания

1 Ссылка на данный метод/средство приведена в МЭК 61508-3 (таблица А. 10).

2 См. также МЭК 61508-6 (приложение D).

Цель: определение возможных отказов в нескольких системах или нескольких подсистемах, которые могут свести к нулю преимущества избыточности из-за одновременного появления одних и тех же отказов во многих частях системы.

Описание: системы, ориентированные на безопасность объекта, часто используют избыточность аппаратных средств и мажоритарный принцип голосования. Этот подход исключает случайные отказы в компонентах или подсистемах аппаратных средств, которые могут помешать корректной обработке данных.

Однако некоторые отказы могут оказаться общими для нескольких компонентов или подсистем. Например, если система установлена в одном помещении, то недостатки вентиляции могут снизить преимущества избыточности. Это может оказаться верным и для других внешних влияний на систему (например, пожар, затопление, электромагнитные влияния, трещины в панелях и землетрясение). Система может быть также подвержена воздействиям, относящимся к ее функционированию и эксплуатации. Поэтому важно, чтобы в рабочих инструкциях были предусмотрены адекватные и хорошо задокументированные процедуры по функционированию и эксплуатации системы, а обслуживающий персонал был хорошо обучен.

Внутренние причины также вносят большой вклад в общее число отказов. Их основой могут являться ошибки проектирования общих или идентичных компонентов и их интерфейсов, в том числе и устаревших компонентов. Анализ отказов по общей причине должен отыскивать также общие дефекты в системе. К методам анализа отказов по общей причине относятся:

- общее управление качеством;

- анализ проектов;

- верификация и тестирование независимой группой;

- анализ реальных ситуаций, полученных из опыта работы аналогичных систем.

Однако область применения такого анализа выходит за рамки только аппаратных средств. Даже если разные программы используются в разных каналах избыточных систем, возможна некоторая общность в программных подходах, которая может привести к росту отказов по общей причине (например, ошибки в общей спецификации).

Если отказы по общей причине не появляются точно в одно и то же время, то должны быть предприняты меры предосторожности путем сравнения методов, применяемых в различных каналах. При этом применение каждого метода должно обнаруживать отказ до того, как он окажется общим для всех каналов. Анализ отказов по общей причине должен использовать этот подход.

Литература:

Review of Common Cause Failures. I. A. Watson, UKAEA, Centre for Systems Reliability, Wigshaw Lane, WA3 4NE, England, NCSR R 27, July 1981.

Common-Mode Failures, in Redundancy Systems. I. A. Watson and G. T. Edwards. Nuclear Technology Vol. 46, December 1979.

Programmable Electronic Systems in Safety Related Applications. Health and Safety Executive, Her Majesty's Stationary Office, London, 1987.

C.6.4 Модели Маркова

Примечание - Краткое сравнение данного метода с методом, основанным на блок-схемах надежности, при анализе полноты безопасности аппаратных средств см. в МЭК 61508-6 (приложение В.1).

Цель: оценка надежности, безопасности и доступности систем.

Описание: строится граф системы, представляющий состояния системы, связанные с ее отказами (состояния отказов представляются узлами графов). Связи между узлами, представляющие собой события-отказы или события-восстановления, имеют весовые коэффициенты, соответствующие частотам отказов или частотам восстановлений. Предполагается, что переход из состояния N в последующее состояние N + 1 не зависит от предыдущего состояния N - 1. Следует заметить, что события, состояния и частоты отказов могут быть детализированы так, что может быть получено точное описание системы, например обнаруженные или необнаруженные отказы, обнаружение наибольшего отказа и т. п.

Метод Маркова подходит для моделирования многих систем, уровень избыточности которых изменяется со временем вследствие нахождения компонента в состоянии отказа или восстановления [15]. Другие классические методы, например FMEA и FTA, не могут быть адаптированы к моделированию влияний отказов в течение жизненного цикла системы, поскольку не существует простой комбинаторной формулы для вычисления соответствующих вероятностей.

В простейших случаях такую формулу, описывающую вероятности системы, можно найти в литературе или вывести самостоятельно. В более сложных случаях существуют методы упрощения (то есть сокращение числа состояний). Для очень сложных случаев результаты могут быть вычислены с помощью моделирования графа на компьютере.

Литература:

The Theory of Stochastic Processes. R. E. Cox and H. D. Miller, Methuen and Co. Ltd., London, UK, 1963.

Finite MARKOV Chains. J. G. Kemeny and J. L. Snell. D. Van Nostrand Company Inc, Princeton, 1959.

Reliability Handbook. B. A. Koslov and L. A. Usnakov, Holt Rinehart and Winston Inc, New York, 1970.

The Theory and Practice of Reliable System Design. D. P. Siewiorek and R. S. Swarz, Digital Press, 1982.

C.6.5 Структурные схемы надежности

Примечание - Ссылка на данный метод/средство приведена в МЭК 61508-3 (таблица А.10) и метод также использован в МЭК 61508-6 (приложение В).

Цель: моделирование в форме диаграмм набора событий, которые должны происходить, и условий, которые должны быть удовлетворены, для успешного выполнения операций системы или задач.

Описание: данный метод позволяет сформировать успешный маршрут, состоящий из блоков, линий и логических переходов. Такой успешный маршрут начинается от одной стороны диаграммы и проходит через блоки и логические переходы до другой стороны диаграммы. Блок представляет собой условие или событие, маршрут проходит через него, если условие истинно или событие произошло. Когда маршрут подходит к логическому переходу, то он продолжается, если критерий логического перехода выполняется. Если маршрут достигает какой-либо вершины, то он может продолжаться по всем исходящим из нее путям. Если существует, по меньшей мере, один успешный маршрут через всю диаграмму, то цель анализа считается достигнутой [10].

Литература:

System Reliability Engineering Methodology: A Division of the State of the Art. J. B. Fussel and J. S. Arend, Nuclear Safety 20 (5), 1979.

Fault Tree Handbook. W. E. Vesely et al, NUREG-0942, Division of System Safety Office at Nuclear Reactor Regulation, US Nuclear Regulatory Commission, Washington, DC 20555, 1981.

C.6.6 Моделирование методом Монте-Карло

Примечание - Ссылка на данный метод/средство приведена в МЭК 61508-3 (таблица В.4).

Цель: моделирование ситуаций реального мира с помощью программных средств методом генерации случайных чисел.

Описание: моделирование методом Монте-Карло используется для решения двух классов проблем:

- вероятностных, в которых для генерации стохастических ситуаций используются случайные числа;

- детерминистических, которые математически преобразуются в эквивалентную вероятностную форму.

Метод Монте-Карло формирует потоки случайных чисел с тем, чтобы генерировать шум при анализе сигналов или добавлять их в случайные смещения или допуски.

Данный метод гарантированно обеспечивает нахождение смещений, допусков или шума в приемлемых диапазонах.

Общие принципы моделирования методом Монте-Карло заключаются в переформулировании проблемы так, чтобы полученные результаты были как можно более точными, что позволяет отказаться от решения проблемы в ее исходной постановке.