Вывод, который при монтаже подвергают пластическим деформациям изгиба (формовке) с углом отклонения от первоначального положения (углом изгиба) более 30°
Одножильный вывод, изготовленный из проволоки круглого или прямоугольного сечения
Вывод, имеющий поперечное сечение в виде круга
Вывод, имеющий поперечное сечение в виде прямоугольника или четырехугольника
Плоский вывод, у которого большая сторона сечения в пять и более раз превышает меньшую
Изделие, предназначенное для эксплуатации во взрывоопасной среде, которое выполнено таким образом, что устранена возможность воспламенения окружающей его взрывоопасной среды в процессе эксплуатации изделия
По ГОСТ 12.1.033
По ГОСТ 28211
По ГОСТ 28211
По ГОСТ 28211
По ГОСТ 28211
По ГОСТ 28211
По ГОСТ 28211
ПРИЛОЖЕНИЕ 3. (Измененная редакция. Изм. № 5, 6, 7, 10).
ПРИЛОЖЕНИЕ 4
Обязательное
ПОРЯДОК НУМЕРАЦИИ ВИДОВ И МЕТОДОВ ИСПЫТАНИЙ И ОБОЗНАЧЕНИЕ ИСПЫТАНИЙ
В СТАНДАРТАХ И ТУ НА ИЗДЕЛИЯ
В настоящем стандарте виды механических испытаний изделий обозначены нумерацией с 101 по 199; климатических испытаний — с 201 по 299; испытаний на стойкость к специальным средам — с 301 по 399; испытаниям на соответствие конструктивно-техническим требованиям — с 401 по 499.
Включенные в стандарт виды испытаний пронумерованы в порядке их изложения. В дальнейшем при включении в стандарт новых видов испытаний их следует обозначать в порядке их включения в пределах указанных выше номеров.
Методы проведения каждого вида испытаний обозначаются номером, соответствующим номеру данного вида испытаний, с добавлением через дефис порядковых номеров методов. При наличии в стандарте одного метода проведения данного вида испытаний метод обозначается порядковым номером один. В дальнейшем при включении в стандарт новых методов испытаний их следует обозначать последующими порядковыми номерами.
Если метод является укрупненным и, в свою очередь, делится на ряд конкретных методов, то это обозначается добавлением к предыдущему обозначению порядкового номера данного метода через точку, например метод 103-2.3.
В стандартах и технических условиях на конкретные виды изделий в этом случае может быть указан конкретный метод (например, 103-2.3) или укрупненный метод (например, 103-2); в последнем случае испытание различных изделий может проводиться одним из конкретных методов, что указывается в стандартах и ТУ более низкого уровня обобщения или в ПИ.
ПРИЛОЖЕНИЕ 5 Обязательное
ТРЕБОВАНИЯ К КРЕПЕЖНЫМ ПРИСПОСОБЛЕНИЯМ ДЛЯ ИСПЫТАНИЙ НА ВОЗДЕЙСТВИЕ
ВИБРАЦИИ И УДАРА
Крепежные приспособления должны удовлетворять следующим условиям:
При испытании на вибропрочность и виброустойчивость отклонение ускорения в местах крепления изделий не должно превышать 25 % значения ускорения в контрольной точке во всем диапазоне частот.
При испытании крупногабаритных изделий величина отклонения ускорений в местах крепления изделий не должна превышать 25 % значения ускорения в контрольной точке в диапазоне частот до 1,5^, гдеУцн — низшая резонансная частота изделия.
Примечания:
Для изделий с массой более 0,1 кг допускаются выбросы отклонений ускорения в местах крепления изделий в 1—3 полосах частот, суммарная ширина которых не превышает 10 % ширины заданного диапазона частот в октавном измерении.
Для изделий с массой меньшей 0,1 кг допускаются выбросы отклонений ускорения в местах крепления изделий 1—3 полосах частот, суммарная ширина которых не превышает 10 % ширины заданного диапазона частот.
Для крупногабаритных изделий рекомендуется применение приспособлений, имитирующих часть объекта эксплуатации. В этом случае отклонение ускорения в местах крепления изделий не регламентируют, а в стандартах и ТУ на изделия должны приводиться чертежи приспособлений.
При испытании на ударную прочность и устойчивость и одиночные удары крепежные приспособления выбирают таким образом, чтобы выполнялось условие
■ >К,
где/'|н — низшая резонансная частота крепежного приспособления, Гц;
т — наименьшая расчетная длительность действия ударного ускорения, мс;
К— коэффициент, зависящий от условий испытаний, массы, габаритных размеров изделий и формы ударного импульса.
Значение коэффициента К для импульсов полусинусоидальной и пилообразной формы должно быть не менее 2-103, для трапецеидального — не менее 104.
Рекомендуется принимать значения Кот 2-103 до 5- 103 для импульсов полусинусоидальной формы и от 104 до 2-104 для импульсов трапецеидальной формы.
Проектирование приспособлений должно производиться в соответствии с НТД на приспособления.
ПРИЛОЖЕНИЕ 6 Рекомендуемое
МЕТОДЫ ИНДИКАЦИИ РЕЗОНАНСНЫХ ЧАСТОТ КОНСТРУКЦИИ
Общие положения
Для индикации резонанса конструкции применяются устройства, контролирующие изменение амплитуды колебаний резонирующей части испытуемых изделий (деталей) относительно амплитуды колебаний точек крепления изделия. По показаниям устройств индикации резонанса определяется резонанс изделия, характеризующийся максимумом амплитуды колебаний резонирующей части изделия и сдвигом фазы колебаний изделия на 90° относительно фазы колебаний точек его крепления. Контроль правильности определения резонанса малогабаритных изделий проводится также путем «срыва» резонанса прикосновением иглой или аналогичным предметом к детали, резонанс которой определяется.
В качестве устройства индикации резонанса могут быть применены различные приборы и аппаратура в зависимости от массы и размера изделия, вида его закрепления и расположения, физических свойств материала изделия.
Индикация резонанса может производиться с использованием непосредственного физиологического восприятия испытателя через его органы чувств (органолептический анализ) или с использованием увеличительных средств (лупы, зрительные трубы, микроскопы), а также вибропреобразователей или оптических систем, основанных, например, на интерференции света.
Возможна индикация резонанса по нарушению функционирования изделий, а также по увеличению их виброшумов.
(Измененная редакция, Изм. № 5).Метод индикации резонанса конструкции с использованием пьезоэлектрических преобразователей
Метод индикации резонанса с использованием пьезоэлектрических измерительных преобразователей (ИП) обеспечивает достаточную точность, если масса детали изделия, резонанс которой проверяется, не менее чем в 10 раз превышает массу ИП, а ее размеры позволяют разместить ИП.
Структурная схема устройства с использованием ИП представлена на черт. 11 настоящего приложения. Устройство состоит из двух ИП, предварительных усилителей, ламповых вольтметров и осциллографа. В качестве ИП могут быть использованы как любые промышленные измерительные вибропреобразователи, так и элементы из любой пьезокерамики в форме диска, кольца или прямоугольника с посеребренными поверхностями и поляризованные по толщине. Толщина пьезоэлементов от 0,3 до 1,0 мм, диаметр или длина — до 10 мм. Масса таких пьезоэлементов составляет от 2 до 500 мг. К посеребренным поверхностям пьезоэлементов легкоплавким припоем припаивают выводы из многожильного изолированного провода сечением не более 0,07 мм2 и длиной не более 20 мм. Выводы изогнуты в виде петли, а их свободные концы припаяны к экранированному проводу, закрепленному на столе вибростенда или на приспособлении для испытаний. Резонансные частоты таких ИП более 100 кГц.
1 — стол вибростенда; 2 — приспособление для испытания; 3 — испытуемое изделие; 4, 5 — пьезоэлектрические вибропреобразователи; 6, 7 — катодные повторители; 8, 9 — милливольтметры; 10 — осциллограф
Черт. 11
Для согласования высокоомного выхода ИП с низкоомным входом лампового вольтметра применяют предварительные усилители или катодные повторители, имеющие входное сопротивление более 300 МОм.
Рекомендуется применять катодные или истоковые повторители, используемые для промышленных измерительных вибропреобразователей.
В качестве вольтметров необходимо применять вольтметры, имеющие выход усиленного измеряемого сигнала для контроля формы и сравнения фазы его.
Для индикации резонанса наиболее пригодны двухлучевые осциллографы. При этом один луч используется для контроля амплитуды формы сигнала и ИП, установленного на испытуемом изделии, а другой — для наблюдения фигур Лиссажу, образованных сигналами с ИП, установленных на изделии и на столе вибрационного стенда или приспособлении для испытаний.
Индикация резонанса при использовании описанного устройства производится по сигналу с ИП, установленного на испытуемом изделии и при сравнении его с сигналом с ИП, установленного на столе вибрационного стенда или приспособления. При плавном изменении частоты колебаний стенда и при поддержании постоянства ускорения стола стенда или приспособления для испытаний при резонансе изделия будет наблюдаться увеличение напряжения по показаниям вольтметра и осциллографа на ИП, установленном на изделии, и поворот эллипса на экране осциллографа. Частота, на которой напряжение на ИП максимально, а эллипс поворачивается на 90°, равна резонансной частоте изделия.
В качестве ИП, с помощью которого контролируют ускорение на столе вибростенда или приспособлении для испытаний, возможно использование измерительного вибропреобразователя, с помощью которого устанавливается и автоматически поддерживается ускорение на приспособлении.
При применении систем управления вибрационными установками в качестве напряжения, пропорционального ускорению в точке крепления изделия, рекомендуется использовать напряжение, снимаемое с выхода катодного повторителя, используемого в системе управления вибрационной установки.
При этом резонансные частоты промежуточных звеньев крепления испытуемого изделия должны быть выше резонансной частоты изделия
.
Метод индикации резонанса конструкции с использованием пьезоэлектрического детектора
Устройство индикации резонанса с использованием пьезоэлектрического детектора применяют для определения резонансных частот малогабаритных и миниатюрных изделий и их элементов массой до 100 г в диапазоне частот до 10 кГц при использовании электродинамического стенда и до 50 кГц и выше при использовании пьезоэлектрического вибратора.
Структурная электрическая схема устройства определения резонансных частот представлена на черт. 12 настоящего приложения. Основным элементом установки является пьезоэлектрический детектор резонансных частот, который является приемником колебаний и будучи непосредственно связанным с резонирующей деталью, преобразует его колебания в электрический сигнал. В качестве детектора используется элемент, изготовленный из любой пьезокерамики. Для определения резонансных частот исследуемое изделие закрепляют на платформе детектора резонансных частот. Крепление исследуемых изделий осуществляют с помощью приспособлений или без них с помощью специальной мастики (70 % воска по ГОСТ 21179, 30 % канифоли по ГОСТ 19113).
Ч
1 — испытуемое изделие; 2 — согласующий держатель; 3 — пьезоэлектрический детектор резонансных частот;; 4 — вибратор; 5 — индикатор (осциллограф); 6— усилитель; 7— частотомер; 8 — генератор звуковых частот
ерт. 12Электрические сигналы от детектора резонансов и от задающего генератора, предназначенного для возбуждения вибратора, соответственно поступают на вертикальный и горизонтальный входы осциллографа. При плавном изменении частоты колебаний вибратора, поддерживая постоянным ускорение вибрации, на резонансной частей изделия наблюдается поворот эллипса на экране осциллографа из-за сдвига фазы сигнала от детектора резонансов.
Резонансную частоту изделия отмечают по частотомеру.
Метод индикации конструкции с использованием емкостных вибропреобразователей
Устройство индикации резонанса с использованием емкостных вибропреобразователей (ЕВП) применяют при испытании токопроводящих изделий и деталей площадью не менее 30 мм2, если отсутствует возможность размещения на них пьезоэлектрических вибропреобразователей.
Структурная схема устройства представлена на черт. 13 настоящего приложения.
1 — стол вибростенда; 2 — приспособление для испытаний; 3 — испытуемое изделие; 4 — искусственный электрод; 5 — пьезоэлектрический вибропреобразователь; 6 — резистор с номинальным сопротивлением 2—5 МОм; 7 — батарея элементов; 8 — конденсатор; 9, 10 — милливольтметры; 11 — катодный повторитель; 12 — осциллограф
В устройстве с использованием ЕВП испытуемое изделие является подвижной обкладкой воздушного конденсатора, неподвижной обкладкой которого является искусственный электрод. В качестве такого искусственного электрода применяется пластина из металла, укрепленная на неподвижном держателе и расположенная на расстоянии 1—3 мм от поверхности испытуемого изделия таким образом, чтобы поверхность пластины была перпендикулярна к направлению вибрации. Площадь пластины должна быть не более площади испытуемого изделия. Пластина укрепляется на неподвижном держателе, защищенном от вибрации корпуса вибростенда, с помощью прокладок, воздушных камер и других демпферов.
К промежутку испытуемое изделие — искусственный электрод прикладывают постоянное напряжение 400—500 В через постоянный резистор с номинальным сопротивлением 2—5 МОм. При вибрации изделия расстояние от него до искусственного электрода меняется, следовательно, меняется емкость промежутка и по цепи источник питания — резистор — воздушный промежуток протекает переменный ток, пропорциональный виброскорости испытуемого изделия, в результате чего на резисторе образуется падение переменного напряжения, по величине которого можно контролировать изменение амплитуды колебаний испытуемого изделия. Для этого сигнал с резистора подают на ламповый вольтметр и затем на один из входов осциллографа, а на другой подают сигнал с выхода лампового вольтметра, к входу которого подсоединен ИП, установленный на столе стенда или приспособлении для испытаний; по этому ИП поддерживается постоянное ускорение на приспособлении или на столе стенда. Вольтметр и осциллограф, применяемые в данном устройстве, такие же, как и в устройстве с использованием пьезоэлектрических вибропреобразователей. При увеличении частоты вибрации и при поддержании постоянного ускорения на столе стенда или приспособлении для испытания изделия виброскорость стола или приспособления уменьшается пропорционально увеличению частоты, и напряжение, развиваемое ЕВП, также уменьшается. С приближением частоты вибрации к резонансной частоте изделия наблюдается увеличение напряжения по показаниям лампового вольтметра, которое достигает максимума на частоте вибрации, равной резонансной частоте изделия. На этой частоте так же, как и при использовании пьезоэлектрического вибропреобразователя, будет наблюдаться поворот эллипса на экране осциллографа на 90°.