δо = 1- K lg (fоз + 0,2 fб + 1),                                             (3.4)

где fоз, fб - площади соответственно озер и болот в процентах к площади всего водосборного бассейна; K - коэффициент, равный 0,7 - 0,9 и зависящий от расположения озер. Наибольшее его значение принимают при низовом их расположении.

Для учета зарегулированности максимального стока на водотоках с проточными озерами, а также на реках Кольского полуострова, Карельской АССР и рек бассейнов Белого и Баренцева морей следует использовать рекомендации СН 435-80.

Для учета озерности и заболоченности для малых водосборов (при 10 ≤ F ≤ 20 км2) рекомендуется формула Н.Н. Чегодаева (1). На водосборах с озерностью более 10 % на стадии разработки технического проекта эти рекомендации требуют (1) уточнения индивидуальными расчетами.

Влияние озерно-болотной аккумуляции в неизученных и зарубежных районах следует учитывать путем сопоставления и анализа зависимостей натурных модулей максимального стока от площади водосбора, устанавливаемых по материалам краткосрочных инженерно-гидрометеорологических изысканий раздельно для водотоков с озерами и болотами и без них. На основании этого и должны быть окончательно обоснованы коэффициенты в формулы (2.1) и (2.10) для учета влияния бессточных емкостей, озер и болот на тех водотоках, на которых полевые обследования не производились.

3.2. Распластывание паводка на транзитных участках предгорных русел

При проложении дорог вблизи возвышенностей или горных хребтов пересекают водотоки (рис. 3.1), которые после выхода на предгорье или полностью бесприточны, или приток к ним не совпадает по времени с максимумом стока, формирующимся в верхней части основного бассейна. В обоих этих случаях водотоки по выходе на предгорный участок являются, как правило, транзитными.

Рис. 3.1 Схема пересечения дорогой транзитных участков водотоков в предгорной местности:

1 - трасса дороги; 2 - границы бассейнов; 3 - стокообразующая часть водосборного бассейна; 4 - начальный створ транзитного участка.

Прохождение паводка по транзитным участкам водотоков обуславливает распластывание паводочной волны, заключающееся в увеличении продолжительности прохождения паводка при относительно постоянном объеме стока, что вызывает уменьшение максимального расхода воды, определяемого в любом створе транзитного участка по формуле:

Qmt = Qm · χp,                                                          (3.5)

где коэффициент χp устанавливают для малых логов с периодическим стоком по методу Л.Л. Лиштвана в зависимости от уклона транзитного русла Jp и расстояния от его начала l (рис. 3.2) и в предположении параболической формы гидрографов с отношением времени подъема и спада паводка равного 1:1,5.

Рис. 3.2 Номограмма для определения коэффициента трансформации максимального расхода воды на транзитных участках водотоков

Для малых водотоков с гидрографами в виде равнобедренного треугольника коэффициент χp вычисляют по формуле:

                                                          (3.6)

При иной схематизации гидрографов и наличии натурных гидрографов расчетный расход в любом створе транзитного русла определяют по более общей формуле:

                                                    (3.7)

здесь                                                       τp = (l : v2) - (l : v1),                                             (3.8)

где Wp - объем стока в расчетный паводок; tк - время концентрации паводка, сек; τp - коэффициент, характеризующий разность во времени прохождения паводка до и после его трансформации на транзитном участке длиной l; v2 - скорость продолжения тыловой части паводка, близкая к меженной скорости; v1 - скорость продвижения лобовой части паводка, близкая к максимальной скорости. Величины средних скоростей течения v2 и v1 могут быть приняты для предварительных расчетов по следующим соотношениям:

Jp......................................

0,0005

0,0005 - 0,001

0,001 - 0,005

0,005

v2, м/с...............................

0,25

0,35

0,4

0,5

v1, м/с...............................

1,5

1,5 - 2

2 - 2,5

2,5 - 3

Для водотоков независимо от размеров, формы и схематизации гидрографов расчетные расходы в заданном створе транзитного участка могут быть вычислены по формуле:

                                           (3.9)

здесь                                                       ve = 0,5 (vо + vз),                                                (3.10)

где tn - продолжительность подъема паводка в начальном створе транзитного участка; n - отношение продолжительности спада к продолжительности подъема паводка в начальном створе; vе - средняя скорость течения потока на транзитном участке; vо, vз - средние скорости живого сечения потока при РУПВ соответственно в начальном и заданном створах. При отсутствии данных по значениям vо средняя скорость vе может быть принята с известной степенью точности равной vе = vз.

Исследования Мосгипротранса в Небит-Даге и Союздорпроекта в предгорьях Гималаев показали (9), что учет распластывания паводков на транзитных участках позволяет установить более близкие к реальным величины расчетных расходов и тем самым обоснованно уменьшить отверстия водопропускных сооружений. Уменьшение отверстий в значительной степени зависит от длины транзитного участка и его продольного уклона и в отдельных случаях могут составлять от 30 до 48 %.

3.3. Слияние нескольких водотоков

В практике проектирования автомобильных и железных дорог нередки случаи вынужденного пересечения двух или нескольких водотоков в месте их слияния или на некотором расстоянии ниже него. К этим же случаям следует отнести и искусственное спрямление русел двух водотоков в одно подмостовое русло, а также переходы через блуждающие реки с неустойчивыми руслами притоков в местах выхода из гор (рис. 3.3).

Рис. 3.3 Схемы возможных пересечений водотоков в местах слияния нескольких притоков:

1 - основной водоток; 2 - варианты проложения дороги; 3 - приток; 4 - искусственное русло после спрямления; 5 - русло водотока до спрямления или прорыва; 6 - русло, образованное при прорыве или свала с конуса выноса

Решение поставленной задачи можно существенно облегчить хронологически одновременными длительными гидрометрическими наблюдениями в устьях притоков и местах, расположенных ниже и выше мостового перехода на основном водотоке. Однако такой случай представляется практически исключением: имеется недостаточное количество пунктов наблюдений, материалы наблюдений ограничиваются непродолжительными сроками или полностью отсутствуют.

Для обоснования требуемой величины расхода в заданном створе проектирования необходим тщательный гидрологический анализ формирования паводковых явлений, что возможно лишь на основе конкретной расчетной методики, позволяющей определить состав необходимых сведений и организацию их сбора в зависимости от степени изученности водотоков.

Анализ общей схемы формирования максимального стока и опыта практических разработок на некоторых мостовых переходах позволили рекомендовать методику расчета, основанную на следующей формуле определения расчетного расхода воды в местах слияния двух или нескольких водотоков:

                    (3.11)

где Qo - максимальный расход заданной ВП в створе перехода через водоток, принимаемый в качестве основного для построения суммарного расчетного гидрографа, м3/с; Qi - максимальный расход той же ВП одного из притоков в месте впадения в основной водоток, м3/с; Kg - коэффициент уменьшения максимального расхода притока при несовпадении наибольшей ординаты его гидрографа с максимумом гидрографа основного водотока во времени; Kт - коэффициент, учитывающий трансформацию максимального расхода притоков на участке основного водотока от устья притока до места перехода; Qп - максимальный расход притока с блуждающим или неустойчивым руслом в месте его выхода в другой бассейн или месте выхода из гор, м3/с; ΔQp - коэффициент учета возможной перегрузки в работе отверстия моста при пропуске паводка от прорыва неустойчивого русла одного из притоков смежного водосбора.

Структура основной расчетной формулы (3.11) универсальная относительно наиболее сложных случаев расположения мостовых переходов в предгорной местности с различными сочетаниями в плане притоков относительно основного водотока и возможными образованиями новых русел. В каждом отдельном случае она может быть конкретизирована исходными условиями.

Основным принимают водоток с наибольшей водностью, площадью бассейна и длиной от створа перехода до водораздела. Величины расходов с основного водотока и притоков определяют по одному из методов (см. п. 2).

Следует различать два характерных случая пересечения основного водотока: в месте слияния одного или нескольких притоков и на некотором расстоянии от него, которые и определяют особенности расчета. Все другие сочетания также учитываются расчетом по формуле (3.11).

Для определения расчетного расхода в случае пересечения основного водотока в устье нескольких притоков следует построить расчетный гидрограф путем суммирования гидрографов с основного бассейна и притоков, предварительно рассчитанных и построенных в соответствии с имеющимися рекомендациями по их форме. Так, для малых водотоков оправдывает себя схематизация гидрографа паводков по равнобедренному треугольнику, для средних и больших целесообразна криволинейная схематизация ветвей подъема и спада гидрографа, предложенных Д.Л. Соколовским.

Для обоснования расчетных коэффициентов в формуле (3.11) принята замена криволинейных ветвей подъема и спада прямыми линиями, при проведении которых соблюдено равенство объемов стока до и после замены, что позволило без ущерба для точности расчетов обосновать соответствующие соотношения между элементами составляемых гидрографов.

Анализ построения суммарного гидрографа (рис. 3.4) показал, что ордината гидрографов притоков может занимать различные положения относительно максимума гидрографа основного водотока.

Рис. 3.4 Схема построения результирующего гидрографа:

1 - гидрограф основного водотока в месте слияния с притоком; 2 - гидрограф притока при слиянии с основным водотоком

В случаях, когда время подъема паводка на основном водотоке tg больше времени подъема воды притока tп, т.е. при tg > tп, коэффициент Kg устанавливают по ветви спада гидрографа притока по следующей формуле:

                                                  (3.12)

где tc - время спада паводка гидрографа притока.

При совпадении максимальных ординат гидрографов притока и основного водотока, т.е. при tg = tp, коэффициент Kg принимают равным 1,0. Для случаев, когда время подъема паводка на основном водотоке меньше времени подъема паводка на притоке, т.е. при tg < tп, коэффициент Kg определяют по ветви подъема гидрографа притока по формуле

Kg = tg : tп                                                       (3.13)

В случае пересечения водотока ниже впадения притоков необходимо учитывать трансформацию паводка на участке основного водотока от устья каждого рассчитываемого притока до створа перехода.

При линейной схематизации ветвей, подъема и спада гидрографа объем стока может быть вычислен по следующей общей формуле

W = 0,5 Qi · tп (1 + ni),                                                 (3.14)

где ni = tc : tп - характеристика наклона кривой спада гидрографа паводка в заданном створе в устье притока.

Время подъема пика паводка при его трансформации на некоторое расстояние от устья притока до створа перехода увеличивается на величину tт, а объем стока трансформируемого паводка с учетом этого может быть равен:

Wт = 0,5 Qт (tп + tт) (1 + nт),                                            (3.15)

где Qт - расход паводка с учетом трансформации; nт - характеристика наклона кривой спада гидрографа при трансформации паводка, определяемая как отношение времени спада к времени подъема трансформированного гидрографа.

Учитывая, что объем стока при трансформации остается практически неизменяемым, коэффициент трансформации может быть получен из уравнения (3.14) и (3.15) с введением коэффициента δт:

                                                             (3.16)

при                                                                                                                 (3.17)

где δт - коэффициент, учитывающий изменение наклона кривой спада гидрографа притока при трансформации; ni, nт - имеют прежние обозначения и могут быть приняты согласно табл. 3.1.

Таблица 3.1

ni

tт : tп

0,05

0,1

0,2

0,3

0,5

1

1

1

1

1

1

1

1

2

1,96

1,91

1,83

1,77

1,67

1,5

3

2,91

2,82

2,67

2,55

2,35

2

4

3,86

3,73

3,5

3,3

3

2,5

С учетом данных табл. 3.1 коэффициент трансформации может быть вычислен по данным табл. 3.2.

Таблица 3.2

tт : tQ

0,05

0,1

0,2

0,3

0,5

1

1

0,95

0,91

0,84

0,77

0,67

0,5

2

0,96

0,94

0,88

0,83

0,75

0,6

3

0,94

0,95

0,91

0,86

0,79

0,67

4

0,98

0,96

0,93

0,89

0,83

0,71