‘ - относится к температуре наиболее нагретой точки для вида охлаждения OD.

2.1.4 Индексы (общие)

E - соответствует эквивалентной температуре охлаждающей среды;

M - соответствует температуре охлаждающей среды при расчете наиболее нагретой точки;

W - соответствует обмотке;

a - соответствует охлаждающему воздуху (температуре);

h - соответствует наиболее нагретой точке (температуре);

m - соответствует коэффициенту, используемому при расчете максимальной температуры наиболее нагретой точки;

о - соответствует маслу;

r - обозначает номинальное значение (если применяется, то всегда ставится последним);

t - соответствует температуре или превышению температуры в момент времени t,

у - соответствует ежегодному значению.

2.1.5 Специальные индексы для температуры масла (если применяется один из этих индексов, то всегда ставится первым)

i - масло внутри обмоток, в верхних слоях;

1т - средняя температура масла в обмотках;

b - масло в нижней части бака, обмотки или охладителя;

о - масло в верхней части бака;

от - средняя температура масла в баке;

е - масло в верхней части теплообменника;

ет - средняя температура в теплообменнике;

bt - температура масла в нижней части бака в момент времени t,

bi - начальная температура масла в нижней части бака;

bu - максимальная температура масла в нижней части бака.

2.2 Непосредственное измерение температуры наиболее нагретой точки

Наиболее значительным ограничением перегрузки трансформатора является температура наиболее нагретой точки обмотки: необходимо стремиться к тому, чтобы с возможно большей точностью определять эту температуру. В настоящее время начинают постепенно выполнять непосредственное ее измерение (оптическими волоконными светопроводами с датчиками или другими приборами аналогичного назначения). Такие измерения должны улучшить оценку температуры наиболее нагретой точки по сравнению с методами расчета, приведенными в п. 2.4.

2.3 Расчетные тепловые характеристики

2.3.1 Принятые упрощения

Следует иметь в виду, что формулы, приведенные в настоящем стандарте, основаны на ряде упрощений. Приведенная на рисунке 1 схема распределения температуры является упрощением более сложной действительной картины распределения температуры. Итак, приняты следующие упрощения:

а) температура масла внутри обмоток повышается линейно от нижней части к верхней независимо от вида охлаждения;

б) превышение температуры проводника увеличивается линейно по высоте обмотки и параллельно превышению температуры масла с постоянной разностью g между двумя прямыми линиями (g - разность между превышением средней температуры, измеренной методом сопротивления, и превышением средней температуры масла);

в) превышение температуры наиболее нагретой точки должно быть выше превышения температуры проводника в верхней части обмотки, как показано на рисунке 1, поскольку необходимо учесть увеличение дополнительных потерь. Для учета этих нелинейностей за разность температур наиболее нагретой точки и масла в верхней части обмотки принято обозначение Нg. Коэффициент Н может иметь значения от 1,1 до 1,5 в зависимости от мощности трансформатора, сопротивления короткого замыкания и конструкции обмотки. При построении графиков и составлении таблиц раздела 3 настоящего стандарта для распределительных трансформаторов использовано значение 1,1, для трансформаторов средней и большой мощности - 1,3.

2.3.2 Температура масла в верхних слоях, измеренная во время испытания, отличается от температуры масла, вытекающего из обмотки. Эта разность особенно заметна в течение неустановившегося режима в результате внезапного появления нагрузки большой амплитуды. Фактически масло в верхних слоях представляет собой смесь различных потоков масла, которые циркулируют вдоль и (или) снаружи разных обмоток.

Рисунок 1 - Схема распределения температуры

Разность между главными обмотками при охлаждении ON обычно незначительна. Для любой обмотки за температуру масла на выходе из обмотки принимается температура смеси масла в верхней части бака.

За температуру масла на выходе из обмотки при видах охлаждения OF и OD принимается температура масла в нижней части обмоток плюс удвоенная разность средней температуры масла в средней части рассматриваемой обмотки и температуры масла в нижней части обмотки.

В силу различий в распределении потоков масла разные виды охлаждений следует рассматривать отдельно. Предполагается, что в трансформаторах с охлаждением ОN и OF циркуляция масла в обмотке осуществляется термосифоном, а в трансформаторах с охлаждением OD - в основном насосом и практически не зависит от градиента температуры масла.

2.3.3 В трансформаторах с видами охлаждения OF и OD (среднюю температуру масла следует определять наилучшим из известных методов, так как от этого непосредственно зависит расчет температуры наиболее нагретой точки. В ГОСТ 3484.2 приведен ряд методов определения значения, используемого только при расчете некоторых поправок на превышение средней температуры обмотки. В настоящем стандарте использован в основном альтернативный метод (см. приложение В) определения средней температуры масла по результатам испытаний.

2.3.4 Поскольку тепловая постоянная времени обмоток обычно небольшая (от 5 до 10 мин), она оказывает на температуру наиболее нагретой точки только ограниченное влияние даже при повышенных кратковременных перегрузках. Продолжительность самой кратковременной перегрузки по таблицам допустимых нагрузок настоящего стандарта равна 30 мин (раздел 3); при расчетах значение тепловой постоянной времени принимают равным нулю.

2.3.5 Для расчета превышения температуры наиболее нагретой точки в постоянном, циклическом или другом режиме можно использовать тепловые характеристики, полученные из различных источников:

а) результатов специальных испытаний на нагрев, в том числе и непосредственных измерений температуры наиболее нагретой точки или температуры масла на выходе из обмоток (при отсутствии непосредственного измерения наиболее нагретой точки коэффициент наиболее нагретой точки N может быть сообщен только изготовителем);

б) результатов обычного испытания на нагрев;

в) значений превышения температуры при номинальном токе.

В таблице 2 приведены тепловые характеристики, которые использовались при составлении таблиц допустимых нагрузок раздела 3 настоящего стандарта. Следует отметить, что если для трансформаторов большой мощности превышение средней температуры обмотки при номинальном токе равно 65 °С для видов охлаждения ОN и OF и 70 °С - для вида охлаждения OD, то в зависимости от конструкции трансформатора превышение температуры наиболее нагретой точки при номинальном токе может составлять более 78 °С.

Таблица 2 Тепловые характеристики, используемые при составлении таблиц нагрузок раздела 3

Показатель

-

Трансформаторы

распределительные

средней и большой мощности

ONAN

ON

OF

OD

Показатель степени масла

x

0,8

0,9

1,0

1,0

Показатель степени обмотки

y

1,6

1,6

1,6

2,0

Отношение потерь

R

5

6

6

6

Коэффициент температуры наиболее нагретой точки

H

1,1

1,3

1,3

1,3

Тепловая постоянная времени масла

??o, ч

3,0

2,5

1,5

1,5

Температура охлаждающей среды

??a, °C

20

20

20

20

Превышение температуры наиболее нагретой точки

????hr, °С

78

78

78

78

Превышение средней температуры обмотки

????wr, °C

65

63

63

68

Градиент температуры наиболее нагретой точки (масло на выходе из обмотки)

Hqr, °С

23

26

22

29

Превышение средней температуры масла

????imr, °C

44

43

46

46

Превышение температуры масла на выходе из обмотки

????ir, °C

55

52

56

49

Превышение температуры масла в нижней части обмотки

????br, °C

33

34

36

43

_______________

1) Для видов охлаждения ON значения ????ir принимают равным ????or

2.4 Расчет температуры в установившемся тепловом режиме

2.4.1 Вид охлаждения ON

Для вида охлаждения ON максимальная температура наиболее нагретой точки при любой нагрузке К равна сумме температуры охлаждающей среды, превышения температуры масла в верхних слоях и разности температур наиболее нагретой точки и масла в верхних слоях

(1)

2.4.2 Вид охлаждения OF

Для вида охлаждения OF метод расчета основан на температуре масла в нижней и средней частях обмотки и средней температуре масла, как указано в 2.3.2. Таким образом, максимальная температура наиболее нагретой точки при любой нагрузке К равна сумме температуры охлаждающей среды, превышения температуры масла в нижней части обмотки, разности температур масла на выходе из обмотки и в нижней части, а также разности температур наиболее нагретой точки и масла на выходе из обмотки

(2)

2.4.3 Вид охлаждения OD

Для вида охлаждения OD метод расчета, в основном, такой же, как и для вида охлаждения OF, за исключением того, что к значению ??h, добавляется поправка на изменение омического сопротивления обмоток от температуры

(при К>1) (3)

где ??h рассчитывают по формуле (2) без учета влияния изменений омического сопротивления;

??hr - температура наиболее нагретой точки при номинальной нагрузке. Для получения более точных результатов следует обращаться за консультацией к изготовителю.

2.4.4 Поправки к формулам расчета

При расчете максимальной температуры наиболее нагретой точки по приведенным выше формулам теоретически возможно вводить различные поправки, например, на изменение в зависимости от температуры:

а) нагрузочных потерь;

б) отношения омических потерь и потерь на вихревые токи в обмотке;

в) вязкости масла.

Для видов охлаждения ON и OF изменение вязкости при изменении температуры компенсируется изменением сопротивления обмоток. В настоящем стандарте эти два явления не принимаются во внимание.

Для вида охлаждения OD влияние вязкости масла на превышение температуры незначительно. Следует учитывать изменение омического сопротивления, например, введением поправки в формулу (3).

2.5 Расчет температуры в неустановившемся тепловом режиме

Любое изменение режимов нагрузки рассматривается как ступенчатая функция. Прямоугольный график нагрузки, используемый при составлении таблиц раздела 3 настоящего стандарта, состоит из одной ступени, направленной вверх, и через некоторое время одной ступени, направленной вниз. Для непрерывно изменяющейся нагрузки ступенчатая функция применяется к меньшим интервалам времени, а для расчета температуры наиболее нагретой точки требуется программа машинного расчета (см. 2.8).

Превышение температуры масла (например, в нижней части) в конце интервала времени t определяют по формуле

где ????bi - начальное превышение температуры масла в нижней части;

????bu - установившееся превышение температуры масла в нижней части при нагрузке, прикладываемой в течение этого интервала времени;

??0 - постоянная времени масла.

При любом изменении нагрузки разность температур обмотки и масла изменяется и достигает нового значения с характерной постоянной времени обмотки. В соответствии с причинами, приведенными в 2.3.4, эта постоянная не принимается в расчет. Принимается, что значение коэффициента нагрузки Кy в последнем выражении формулы (1) и двух последних выражениях формулы (2) мгновенно достигает нового значения.

2.6 Термический износ изоляции трансформатора

2.6.1 Закон термического износа

Кроме всех других воздействий, которыми можно было бы пренебречь, изоляция подвергается термохимическому износу. Этот процесс является кумулятивным и приводит к недопустимому ее состоянию по некоторым критериям. Согласно закону Аррениуса, период времени до достижения этого состояния в зависимости от скорости химической реакции выражается формулой

Срок службы = е(α+β/T), (5)

где α и β - постоянные;

T - абсолютная температура.

Для ограничения диапазона температуры можно пользоваться более простым экспоненциальным отношением Монтсингер

Срок службы = е-????, (6)

где ?? - постоянная;

?? - температура, °С.

Примечание. В настоящем стандарте используется отношение Монтсингер, которое, по приведенному выше определению, является упрощением основного, используемого в других руководствах по нагрузке, закона Аррениуса относительно термохимического износа. Для рассматриваемого в настоящем стандарте диапазона температур использование отношения Монтсингер считается достаточным и, в сущности, дает оценку термического износа с запасом прочности.