Определение грузоподъемности сближенных прогонов при гусеничной нагрузке

§ 50. При гусеничной нагрузке (рис. 11) грузоподъемность сближенных прогонов удобнее определять путем проверки прочности прогонов на пропуск конкретной машины. Тем более, что на практике обычно приходится решать вопрос о возможности пропуска по мосту не нескольких разных нагрузок, а одной с конкретной расчетной схемой.

Рис. 11. Схема гусеничной нагрузки

Прочность сближенных прогонов на пропуск гусеничной нагрузки проверяется по формуле

,(11)

где ?? - напряжение в прогоне от гусеничной нагрузки, кгс/см2; q - постоянная нагрузка в кгс на 1 пог. см; l - расчетный пролет прогона, см; Рг - равномерно распределенная нагрузка от давления одной гусеницы в кгс на 1 пог. см ее длины; d - расстояние между осями прогонов поперек моста, см; bг - ширина гусеницы, см; ??1 и ??2 - коэффициенты упругого распределения давления гусеницы, которые определяют по таблицам приложений 10 или 11 в зависимости от числа прогонов, на которые передается давление и от отношений:

и ;

сг - опорная длина гусеницы, см; kпp - коэффициент упругой передачи для прогонов, определяемый по формуле (8), при этом момент инерции поперечин берется для такого их количества, которое находится на прогоне под нагрузкой гусеницы; R - расчетное сопротивление древесины, определяемое по табл. 1 § 34 с учетом коэффициентов по табл. 2 § 36.

Пример 3. Для балочного моста с пролетами по 5 м, описанного в примере 2, требуется определить возможность пропуска трактора Т-180Г с навесным плугом ПН-8-35.

С учетом естественной коничности прогоны в середине пролета имеют расчетный диаметр 28 см с серповидным загниванием сверху на глубину 3 см. Расстояние между осями прогонов 60 см. Поперечины из пластин 20/2 имеют загнивание сверху на глубину 1 см.

По приложению 7 для трактора Т-180Г находим Рг = 3,88 тс/м, сг = 232 см, bг = 70 см.

Давление гусеницы передается на

?? 12 поперечин.

Коэффициент упругой передачи будет

= ,

kпр = 0,0265 < 0,055, следовательно, давление передается на семь прогонов. Приближенно принимаем передачу на пять прогонов:

; .

По таблице приложения 11 находим коэффициенты упругого распределения

??1 = 0,0206, ??2 = 0,0175.

По формуле (11) определяем напряжение в наиболее нагруженном прогоне:

= 150,1 кгс/см2 < R = 192 кгс/см2,

R = 160??1,2 = 192 кгс/см2.

Напряжение в прогоне менее расчетного сопротивления для древесины. Следовательно, трактор Т-180Г по мосту пропускать можно.

Определение грузоподъемности сосредоточенных прогонов при автомобильной или колесной нагрузке

§ 51. Сосредоточенные прогоны располагаются на значительном расстоянии друг от друга (1,20-1,80 м), упругое распределение сосредоточенной нагрузки проезжей частью невелико, поэтому оно не учитывается.

Распределение временной нагрузки между прогонами учитывается коэффициентом поперечной установки, который показывает, какая часть давления оси передается на расчетный прогон. Коэффициент поперечной установки определяется в предположении разрезанности поперечин над прогонами по закону рычага. Так же как при сближенных прогонах, при определении грузоподъемности сосредоточенных прогонов сначала по формуле вычисляют допускаемую эквивалентную нагрузку, а затем по приложению 5 определяют марки автомобилей, которые можно пропускать по мосту.

Колея грузовых отечественных автомобилей Е (рис. 12) колеблется от 174 до 240 см. Она, как правило, больше расстояния между осями прогонов. Поэтому второе колесо при допущении разрезанности поперечин на расчетный прогон А не влияет. Следовательно, при одном автомобиле на мосту (рис. 12, а) коэффициент поперечной установки будет равен 0,5.

Рис. 12. Схемы к определению коэффициента поперечной установки автомобильной нагрузки для сосредоточенных прогонов:

а - один автомобиль на мосту; б - два автомобиля на мосту

При двух автомобилях на мосту (рис. 12, а) коэффициент поперечной установки определяют по формуле

,(12)

где ??1 и ??2 - расстояния от соседних прогонов до колес, стоящих между этими прогонами и расчетным прогоном (см. рис. 12,б).

Грузоподъемность прогонов при автомобильной и колесной нагрузках определяют по формуле

,(13)

где Pэ - допускаемая эквивалентная нагрузка на прогон, кгс/см; W - момент сопротивления прогона, см3; q - постоянная нагрузка от веса проезжей части и собственного веса прогона, кгс/см; l - расчетный пролет прогона, см; Kа - коэффициент поперечной установки; пвр - коэффициент перегрузки временной нагрузки.

Пример 4. Балочный мост с трехъярусными прогонами имеет расчетные пролеты по 6,5 м. Расстояние между осями прогонов равно 1,40 м. Прогоны из лиственницы имеют диаметр в середине пролета 29 см. Верхнее бревно имеет сверху серповидное загнивание на глубину 4 см, снизу - стес шириной 1/3 диаметра; среднее бревно имеет такие же стесы сверху и снизу; нижнее бревно имеет стес только сверху.

По таблицам приложения 2 и 3 определяют суммарный момент сопротивления прогона с учетом загнивания и стесов

W = 1670 + 2386 + 2340 = 6402 см3.

Здесь для верхнего бревна момент инерции взят по таблице приближенно без учета стеса внизу.

Постоянную нагрузку на прогон определяют по приложению 9:

q = V ?? d = 0,59??0,8??1,40 = 0,66 тс/м = 6,6 кгс/см.

По формуле (13) определяем допускаемую эквивалентную нагрузку на прогон

По таблице приложения 5 находим, что при указанной допускаемой эквивалентной нагрузке можно эксплуатировать по мосту автомобили МАЗ-205, МАЗ-503, ЛАЗ-699А, все автомобили КАЗ, Урал и меньшей грузоподъемности.

Определение грузоподъемности сосредоточенных прогонов при гусеничной нагрузке

§ 52. При гусеничной нагрузке грузоподъемность сосредоточенных прогонов определяют путем проверки прочности прогонов на пропуск конкретной машины.

Сначала определяют коэффициент поперечной установки гусеничной нагрузки по формуле (рис. 13):

,(14)

где Kг - коэффициент поперечной установки гусеничной нагрузки; bг - ширина гусеницы; d1 и d2 - расстояния между осями прогонов.

Рис. 13. Схема к определению коэффициента поперечной установки гусеничной нагрузки для сосредоточенных прогонов

При опорной длине гусеницы сг больше или равной пролету напряжения в прогоне проверяют по формуле

,(15)

где Рг - давление в кгс на 1 см от одной гусеницы; Кг - коэффициент поперечной установки гусеничной нагрузки.

При опорной длине гусеницы сг меньше пролета напряжения в прогоне проверяют по формуле

,(16)

где сг - опорная длина гусеницы, см.

Остальные обозначения указаны выше.

Пример 5. Для балочного моста, описанного в примере 4, требуется определить возможность пропуска трактора Т-180 по условию прочности прогонов. Трактор Т-180 имеет общий вес 15,6 тс; опорную длину гусеницы сг = 2,32 м; давление на 1 пог. см одной гусеницы Pг = 33,6 кгс/см; ширину гусеницы bг = 0,70 м.

В предыдущем примере определена постоянная нагрузка q = 6,6 кгс/см и момент сопротивления трехъярусного прогона с учетом загнивания W = 6402 см3. Коэффициент поперечной установки гусеничной нагрузки по формуле (14) будет

.

Опорная длина гусеницы сг = 2,32 м меньше пролета, равного 6,5 м. Поэтому напряжение в прогоне проверяется по формуле (16):

;

[1,1??0,875??33,6??232(650 - 0,5??232) + 0,6??6,6??6502] = 222 кгс/см2 = R = 231 кгс/см2.

R = 160??1,2??1,2 = 231 кгс/см2.

При определении расчетного сопротивления учтены коэффициенты 1,2 на породу леса (лиственницу) и простоту конструкции 1,2 согласно §36 и 37.

Напряжение в прогоне меньше расчетного сопротивления. Поэтому трактор Т-180 пропускать по мосту можно.

Определение грузоподъемности составных прогонов при автомобильной или колесной нагрузке

§ 53. Грузоподъемность составных прогонов определяют так же, как сосредоточенных прогонов, но момент сопротивления берут для составного сечения с учетом коэффициента составности. Кроме прочности на изгиб, грузоподъемность составных прогонов определяется условиями прочности на скалывание колодок или шпонок, а также условиями прочности на скалывание и смятие бревна или бруса между колодками или шпонками.

При определении момента сопротивления сечения, площадок скалывания и смятия учитывают загнивание элементов и трещины по рабочим площадкам.

Если по плоскостям скалывания будет обнаружено значительное количество трещин, гниль и сильные обмятия в гнездах колодок, грузоподъемность составных прогонов определяют как грузоподъемность сосредоточенных с учетом ослабления их колодками (шпонками).

А. Грузоподъемность составных прогонов по условию прочности на изгиб определяют по формуле

,(17)

где Pэ - допускаемая эквивалентная нагрузка, кгс/см; W - момент сопротивления составного сечения прогона, см3, определяемый по формулам приложения 4; ?? - коэффициент составности, который согласно СН 200-62 принимают:

Для двухъярусных балок пролетом до 6 м?? = 0,85

»»»»»9 » и более?? = 0,90

»трехъярусных»»»6 »?? = 0,80

»»»»»9 » и более?? = 0,85

Остальные обозначения указаны выше. Числовой коэффициент формулы (17) учитывает коэффициент 0,9 согласно п. 5 примечаний § 602 СН 200-62.

Б. Грузоподъемность составных прогонов по условию прочности на скалывание колодок или шпонок определяют по формуле

,(18)

где Но - плечо внутренней пары составного сечения в см, определяют по формулам приложения 4; nк - количество колодок или шпонок на длине половины пролета; bк - ширина колодки или шпонки, см (рис. 14); aк - длина колодки или шпонки.

Рис. 14. Прогон составного сечения на колодках

Числовой коэффициент формулы (18) учитывает коэффициент условий работы 0,8 согласно табл. 67 § 633 СН 200-62.

В. Грузоподъемность составных прогонов по условию смятия бревна или бруса колодками определяют по формуле

,(19)

где Fсм - площадь смятия бревна или бруса одной колодкой (определяют по глубине врезки колодки в бревно, см. рис. 14).

Г. Грузоподъемность составных прогонов по условию скалывания бревна или бруса между колодками определяют по формуле

,(20)

где ас - расстояние между колодками, см, у опор (см. рис. 14); bс - ширина площадки скалывания бревна или бруса между колодками (см. рис. 14); nк - количество колодок или шпонок на длине половины пролета.

Числовой коэффициент формулы (20) учитывает коэффициент условий работы 0,8 согласно табл. 67 § 633 СН 200-62.

Пример 6. Балочный мост с трехъярусными составными прогонами имеет пролеты по 8,5 м Расстояние между осями прогонов 1,4 м. Составные прогоны изготовлены из сосновых бревен диаметром 26 см, соединенных дубовыми колодками и болтами (рис. 15). По длине пролета колодки расположены на равных расстояниях по 90 см между их осями. Длина промежутков между торцами колодок составляет 50 см, глубина врезок колодок в бревна - 6,5 см,

Бревна и колодки загниваний древесины и обмятий не имеют, но на расстоянии 2,50 м от опоры нижнее бревно расчетного прогона в промежутке между колодками имеет почти сквозную трещину по площадке скалывания.

Определяем постоянную нагрузку на прогон:

q = Vо??d = 0,62??0,6??1,40 = 0,52 тс/м = 5,2 кгс/см.

По формулам приложения 4 определяем момент сопротивления составного сечения прогона.

Момент инерции относительно оси х- х (см. рис. 15):

см4;

см3.

Коэффициент составности принимаем 0,85.

А. Грузоподъемность составного прогона по условию прочности на изгиб.

Б. Грузоподъемность составного прогона по условию прочности на скалывание колодок. Плечо внутренней пары составного сечения определяем по формуле приложения 4:

см.

По чертежу обследования моста (см. рис. 15) длина колодок ак = 40 см, ширина колодок bк = 27 см, их количество на длине полупролета nк = 4.

Колодки изготовлены из дуба, поэтому коэффициент на породу леса при скалывании будет 1,3.

Допускаемую эквивалентную нагрузку определяем по формуле (18):

,

В. Грузоподъемность прогонов по условию смятия бревна колодками. При глубине врезки колодок 6,5 см в бревно диаметром 26 см площадь сегмента, подвергающаяся смятию, равна 104 см2.

Рис. 15. К примеру определения грузоподъемности составных прогонов:

а - невыгоднейшая установка одного автомобиля для прогона А; б - конструкция составного прогона

Допускаемая эквивалентная нагрузка

= 30,1 кгс/см = 3,01 тс/м.

Г. Грузоподъемность прогонов по условию скалывания бревна между колодками.

Расстояние между колодками ас = 50 см, ширина врубки (хорды) bс = 22,5 см (см. рис. 15).

На расстоянии 2,5 м от опоры в промежутке между шпонками бревно прогона имеет трещину по площадке скалывания. Этот участок в работе бревна на скалывание не учитываем. Поэтому количество колодок в формуле (20) уменьшаем до 3.

Допускаемая эквивалентная нагрузка будет

= 22,2 кгс/см = 2,22 тс/м.

Грузоподъемность составного прогона определяется условием скалывания бревна с трещиной, так как при этом допускаемая нагрузка получилась наименьшая 2,22 тс/м. По таблице приложения 5 для пролета 8,5 м находим, что при указанной эквивалентной нагрузке по мосту можно пропускать автомобили ЗИЛ, ЛАЗ, МАЗ-205. Нельзя пропускать автомобили МАЗ-200 и более тяжелые.

2. ОПОРЫ БАЛОЧНЫХ МОСТОВ

Определение грузоподъемности свайных опор балочных мостов

§ 54. Опоры деревянных мостов чаще всего имеют загнивание свай на уровнях изменения горизонтов воды, при сопряжении насадок со сваями и в местах опирания прогонов на насадки. При сближенных прогонах грузоподъемность опоры определяется прочностью насадки на изгиб, смятием насадки при сопряжении со сваями, прочностью свай на сжатие с учетом продольного изгиба и несущей способностью свай по грунту.

При определении грузоподъемности опор сначала определяют допускаемую эквивалентную нагрузку, по которой, пользуясь таблицей приложения 5, определяют марки автомобилей или тракторов, которые можно пропускать по мосту.

А. Определение грузоподъемности опоры по условию прочности насадки на изгиб. Наиболее опасным является сечение насадки при сопряжении ее со сваей, так как в этом сечении большой опорный изгибающий момент, насадка ослаблена врубкой и часто имеет загнивание.