12.2. Створы переходов следует размещать на участках водоемов, которые характеризуются:

- возможно меньшей шириной водоема при среднем уровне;

- плавностью подводного и надводного рельефа;

- отсутствием оползневых, просадочных и суффозионных явлений на береговых склонах;

- возможно меньшими деформациями надводного и подводного склонов берега;

- возможно меньшими вдольбереговыми перемещениями наносов;

- преобладанием на трассе перехода пород, доступных для разработки траншей и прорезей без предварительного рыхления взрывами;

- наличием глубин, доступных для разработки подводной траншеи имеющимися у строительной организации техническими средствами;

- наличием удобных подъездов к водоему и удобных площадок для производства монтажных работ недалеко от берега;

- наличием на берегах мест для размещения информационных знаков ограждения хорошо видимых с акватории водоема;

- достаточной удаленностью створа перехода от существующих гидротехнических сооружений и зданий различного назначения.

При выборе участка и створа перехода следует учитывать также обеспечение возможно меньших нарушений хозяйственного использования водоема и его береговой зоны как в процессе строительства перехода, так и в период его эксплуатации.

12.3. Если береговые склоны водоема имеют большую крутизну (20-70° и более) и высоту порядка нескольких десятков или даже сотен метров, а на трассе перехода имеется залив, балка или овраг, то створ перехода трубопровода целесообразно назначать по направлению от устья залива вдоль одного из его берегов, по тальвегу балки или оврага, а далее от водоема - по одному из склонов (оврага или балки) до его бровки. В пределах склона оврага или балки при этом предусматривают противоэрозионную защиту трубопровода.

12.4. Предварительные работы по выбору участка перехода трубопровода через водоем, выполняемые на предполевом этапе изысканий, завершают подготовкой материалов, указанных в п. 11.4. Эти материалы передают на рассмотрение комиссии, которая принимает решение о выборе одного, а в особо сложных случаях двух участков прокладки трассы магистрального трубопровода через водоем.

Окончательное решение о размещении створа магистрального трубопровода принимают на основании рассмотрения материалов полевых изысканий и расчетов с учетом требований п. 12.2.

13. ПРОГНОЗ ПЕРЕФОРМИРОВАНИЙ БЕРЕГА

Исходные положения

13.1. В основу прогноза переформирования берегов водохранилищ, сложенных размываемыми породами, положена следующая схема процесса.

Под действием ветрового волнения первоначальный подтопленный береговой склон теряет устойчивость и разрушается. Из материала разрушения формируется пологая, постепенно увеличивающаяся в ширину береговая отмель, в границах которой происходит частичное рассеяние волновой энергии. Переформирование берега завершается, когда отмель достигает предельной ширины Во, достаточной для поглощения всей волновой энергии, способной разрушать береговой откос (рис. 14).

Рис. 14. Схема конечной стадии переформирования берега и его основные элементы.

??р - объем разрушения; ??а - объем аккумуляции; ab - криволинейная часть профиля береговой отмели шириной ВН; bc - прямолинейная часть профиля отмели шириной ВD; Во - ширина береговой отмели; H - глубина размывающего действия волны при НПУ; D - сработка уровня воды водохранилища; ??н - угол наклона надводного склона берега; ??п - угол наклона внешнего склона береговой отмели; Lб - значения смещения линии берега.

13.2. Для прогноза береговых переформирований необходимо иметь следующие материалы:

- профиль берегового склона в расчетном створе и сведения о его геологическом строении;

- сведения о расположении расчетного створа на плане водохранилища;

- профили дна водохранилища, ориентированные по четырем наветренным румбам и проходящие через расчетную точку береговой зоны;

- сведения о ветровом режиме рассматриваемого района водохранилища;

- сведения о режиме уровней воды в водохранилище за безледоставный период.

Определение расчетных характеристик ветра и волнения

13.3. В качестве исходных материалов для определения расчетных характеристик ветра на участке перехода трубопровода через водоем следует использовать данные о повторяемости рW ветров различных градаций скорости W по восьми румбам для каждого месяца безледоставного периода, содержащиеся в Справочниках по климату СССР, часть III (ветер). Из Справочника выбираются сведения о ветрах по ближайшей к участку перехода метеостанции, с учетом класса ее открытости. Следует выбирать наименее защищенные метеостанции, а поправку на защищенность флюгера вводить в соответствии с указаниями Справочника. В сомнительных случаях данные Справочника следует корректировать на основании наблюдений, специально поставленных на участке перехода трубопровода через водоем.

13.4. Из приведенных в Справочнике по климату CCСР сведений о повторяемости ветра рW за каждый месяц следует использовать данные по четырем наветренным румбам (см. рекомендуемое приложение 19, рис. 46), которые необходимо пересчитать на сезонные повторяемости рWс, относящиеся ко всему безледоставному периоду продолжительностью m полных пли неполных (первый и с последний) месяцев, по формуле

рWс=,(46)

где Nm - продолжительность соответствующего полного или неполного месяца.

Пример пересчета приведен в рекомендуемом приложении 19 и табл. 37, 38.

13.5. Для перехода от ветрового режима водохранилищ к волновому режиму участка перехода трубопровода для этого участка следует построить волновые характеристики по четырем наветренным румбам, выражающие в графической фирме связь между скоростью ветра W и высотой волны h на подходе к зоне прибрежного мелководья.

Расчеты волновых характеристик следует выполнять при расчетном уровне воды, равном НПУ, используя методы, рекомендуемые для волн на конечной глубине СНиП 2.06.04-82, с учетом особенностей, которые могут возникнуть на водохранилищах при редких колебаниях глубин по линии разгона волн.

Пример построения волновых характеристик приведен в рекомендуемом приложении 19, рис. 47.

13.6. По волновым характеристикам береговой зоны в створе перехода (см. рекомендуемое приложение 19, рис. 47) и сведениям о сезонной повторяемости ветра (рекомендуемое приложение 19. табл. 38) следует определить обеспеченности высот волн P по каждому наветренному румбу, относя таким образом, сезонные повторяемости скоростей ветра к соответствующим высотам волн. Пример такого пересчета приведен в рекомендуемом приложении 19, табл. 39. Поскольку в табл. 39 повторяемости рWс и обеспеченности Р относятся к интервалам ??h различной величины, следует с помощью интерполяции обеспеченностей перейти к более общим характеристикам волнения, причем интерполяция приобретает большую определенность, если оперировать с lgP. Результат такой интерполяции и вычисление соответствующих повторяемостей р для частного примера приведены в рекомендуемом приложении 19, табл. 40. Обеспеченность больших высот волн малой повторяемости определяют путем экстраполяции.

13.7. Получив для волн hi, повторяемость рi?? раздельно по четырем наветренным румбам ??, следует определить среднюю годовую (точнее, среднюю за безледоставный период) мощность этих волн Ri, суммированную по румбам и отнесенную к единице протяженности береговой линии. Эта мощность рассчитывается по формуле

Ri=7,95Npi??cos????.(47)

Здесь N - суммарная продолжительность безледоставного периода в часах (N=); pi?? - повторяемость волн hi румба ?? в процентах; ???? - угол, образованный лучом волны при соответствующем румбе ветра и нормалью к береговой линии, в градусах.

Суммарная средняя годовая мощность всего диапазона высот волн равна

Ri=7,95Npi??cos????.(48)

В промежуточных расчетах для их упрощения рекомендуется использовать относительные выражения среднегодовой мощности:

ri=pi??cos????;

r=pi??cos????.

Пример расчета относительных мощностей ri, и r приведен в рекомендуемом приложении 19, табл. 41. На рис. 15 дан пример распределения относительной мощности ri по высоте волны и интегральная кривая относительной мощности r.

Рис. 15. Распределение относительной мощности по высоте волны ri и интегральная кривая относительной мощности r.

13.8. В качестве расчетной высоты волны ho принимают высоту, соответствующую поступлению к береговой отмели основной части (96-98%) волновой энергии, ho снимают с интегральной кривой относительной мощности волн (рис. 15).

Установление профиля устойчивой береговой отмели и определение предельного смещения линии берега

13.9. Профиль устойчивой береговой отмели состоит из верхнего криволинейного участка, простирающего: от уреза воды до глубины Н, равной глубине размывающего действия расчетной волны ho, и прямолинейного участка, простирающегося от глубины Н до глубины Н+D (см. рис. 14), где D - сработка уровня водохранилища за безледоставный период, определяемая по данным о режиме работы водохранилища.

При совмещении оси х с расчетным уровнем воды (обычно принимаемым равным НПУ), начала координат - с точкой уреза при этом уровне, и при направлении оси у вертикально вниз линию профиля криволинейного участка следует построить по уравнению

x=ky2+(1/mп)y.(49)

Протяженность криволинейного участка ВH и прямолинейного участка ВD следует вычислить по уравнениям:

ВH=kH2+(1/mп)H(50)

ВD=D[2kH+(1/mп)].(51)

Полную ширину устойчивой береговой отмели Во принимают равной Во=ВH+ВD.

Коэффициент k в уравнениях (49)-(51) вычисляют по формуле

k=(mп-mo)/(20mпmo),(52)

где mп - уклон пляжа, уклон линии профиля в точке уреза; mo - уклон отмели, уклон линии профиля на условной глубине.

Значения mп и mo следует определять исходя из фракционного состава грунтов разрушаемого берегового склона. Фракции крупностью меньше 0,05 мм следует исключать из рассмотрения. По среднему диаметру из 30 % наименее крупных из оставшихся фракций следует определять уклон отмели mo, по среднему диаметру из 10% наиболее крупных фракций - уклон пляжа - mп. Уклоны mп и mo для грунтов различной крупности приведены в табл. 10.

Таблица 10

Грунт

Диаметр фракций d мм

Уклон пляжа mп

Уклон отмели mo

Песок мелкий

0,10-0,25

0,03

0,005

Песок средний

0,25-0,50

0,07

0,01

Песок крупный

0,50-1,00

0,14

0,02

Гравий мелкий

1,00-2,00

0,19

0,03

Гравий средний

2,00-5,00

0,21

0,05

Гравий крупный

5,00-10,00

0,25

0,08

Галечник мелкий

10-20

0,30

0,10

Галечник средний

20-50

0,36

0,15

Галечник крупный

50-100

0,40

0,20

Глубину размывающего действия волны H, входящую в формулы (50) и (51), следует определять по графикам (рис. 16) в зависимости от высоты расчетной волны ho и крупности донных наносов на внешнем крае береговой отмели.

Рис. 16. Зависимость глубины размывающего действия волны (Н м) от высоты волны (h м) при различной крупности донных наносов (d мм).

Уклон подводного берегового склона tg??п (см. рис. 14) рекомендуется принимать равным 0,5. Уклон надводного берегового склона tg??н не следует брать более пологим, чем уклон берега в естественном состоянии. В предварительных расчетах и при отсутствии надежных гидрогеологических материалов рекомендуется брать tg??н (см. рис. 14) при сыпучих легко размываемых грунтах равным 0,5, а при наличии прослоек из связных и полускальных пород - 1,0.

13.10. Положение профиля устойчивой отмели относительно начального берегового склона следует определять путем графического совмещения этих профилей, как это показано на рис. 14, выполненного с соблюдением условия

??а/??р=??,(53)

где ??а - объем аккумуляции; ??р - объем разрушения начального берегового склона; ?? - коэффициент аккумуляции, равный относительному содержанию в материале разрушения фракций d??0,05 мм.

Предельное смешение линии берега Lб следует принимать равным расстоянию между положениями точек уреза на исходном профиле и на профиле, соответствующем положению устойчивой береговой отмели.

Пример построения профиля устойчивой береговой отмели и определения по нему предельного смещения линии берега Lб показан в рекомендуемом приложении 19, рис. 48.

Определение размера смещения линии берега на заданный срок

13.11. Расчет развития переформирования берега во времени состоит в определении размера смешения береговой линии Lбk, соответствующего заданному сроку t лет, с одновременным установлением объемов разрушения берегового склона ??рk и аккумуляции ??аk и соответствующей ширины береговой отмели Вk, меньшей чем предельная ширина Во.

Координаты профиля отмели Вk рассчитываются по формулам (49)-(51), в правую часть которых вводится коэффициент Вk/Во. Задаваясь несколькими значениями Вk путем графического совмещения находятся соответствующие значения ??рk и Lбk. Пример таких совмещений показан на рис. 50 рекомендуемого приложения 19. По полученным частным значениям строится график связи ??рk и Lб с Вk. Пример такого графика показан на рис 49 рекомендуемого приложения 19.

Интервал времени ??t, необходимый для того, чтобы ширина береговой отмели увеличилась на величину ??B=Вk+1+Вk, а объем крушения берегового склона соответственно увеличился на величину ????рk=??k+1-??k, следует вычислять по формуле

??t=(??????)/Rk,(54)

где ?? - количество волновой энергии, затрачиваемой на разрушение единицы объема породы берегового склона, которое определяется по табл. 11, т/м2; Rk - средняя годовая мощность всех волн с учетом потерь энергии на отмели шириной Вk. Величину Rk следует вычислять по формуле