Таблица Л.1

Допустимые вероятности отказов конструкций от пожаров .

Группа конструкций

Вероятность отказов

Вертикальные несущие конструкции, противопожарные преграды, ригели, перекрытия, фермы, балки

10-6

Другие горизонтальные несущие конструкции, перегородки

10-5

Прочие строительные конструкции

10-4

Предельные вероятности отказов конструкций в условиях пожаров рассчитывают по формуле

(Л.7)

где Ро - вероятность возникновения пожара, отнесенная к 1 м2 площади помещения;

РА - вероятность выполнения задачи (тушения пожара) автоматической установкой пожаротушения;

Рп.о - вероятность предотвращения развитого пожара силами пожарной охраны.

Ро рассчитывают по методу, приведенному в ГОСТ 12.1.004, или берут из таблицы Л.2.

Таблица Л.2

Вероятности возникновения пожара Ро для промышленных помещений.

Промышленный цех

Вероятность возникновения пожара Ро, м/год·10-5

По обработке синтетического каучука и искусственных волокон

2,65

Литейные и плавильные

1,89

Механические

0,60

Инструментальные

0,60

По переработке мясных и рыбных продуктов

1,53

Горячей прокатки металлов

1,89

Текстильного производства

1,53

Электростанций

2,24

Оценки РА берут из таблицы Л.3.

Таблица Л.3

Вероятности выполнения задачи АУП РА.

Тип АУП

Вероятность выполнения задачи

Установки водяного пожаротушения:

спринклерные;

0,571

дренчерные

0,588

Установки пенного пожаротушения

0,648

Установки газового пожаротушения с:

механическим пуском;

0,518

пневматическим пуском;

0,639

электрическим пуском

0.534

Рп.о устанавливают по статистическим данным или расчетом с учетом установки автоматических средств обнаружения пожара, сил и средств пожарной охраны. В случае отсутствия данных по пожарной охране и системе пожарной сигнализации следует положить Рп.о = 0.

По вычисленным значениям определяют значение характеристики безопасности ??, при необходимости интерполируя данные таблицы Л.4.

Таблица Л.4

Значения характеристики безопасности ??

Вероятность отказов конструкций при пожаре

Характеристика безопасности ??

Вероятность отказов конструкций при пожаре

Характеристика безопасности ??

· 10-5

3,7

· 10-3

2,3

4,1

2,8

4,4

3,2

4,5

3,5

· 10-4

3,1

· 10-2

1,3

3,5

2,0

3,8

2,5

4,0

2,6

Л.1.3. Расчет коэффициента огнестойкости Ко проводят по формуле

(Л.8)

В качестве примера в таблице Л.5 приведены значения Ко для условий Ро = 5·10-6 м2/год и РА = 0,95, Рп.о = 0.

Таблица Л.5

Коэффициент огнестойкости Ко.

Площадь отсеков S, м2

Вертикальные несущие конструкции, противопожарные преграды, балки, перекрытия, фермы

Другие горизонтальные несущие конструкции, перегородки

Прочие строительные конструкции

1000

1,36

0,99

0,58

2500

1,52

1,14

0,75

5000

1,69

1,26

0,87

7500

1,79

1.31

0,94

10000

1,84

1,42

0,99

20000

2,03

1,47

1,10

Л.1.4. Требуемый предел огнестойкости to рассчитывают по вычисленным значениям tэ и Кo

(Л.9)

Примеры.

1. Определить требуемую огнестойкость железобетонной плиты перекрытия над участком механического цеха при свободном горении 100 кг индустриального масла на площади F = 3 м2. Размеры помещения 18??12??4 м, в помещении есть проем с размерами 4??3 м. Принять, что допустимая вероятность отказов Рдоп равна 10-6.

Расчет.

Из справочников найдем, что скорость выгорания масла Мср = 2,7 кг/(м2·мин). Тогда вычислим продолжительность локального пожара tп по формуле (Л.6)

Проемность П в случае локального пожара определим по формуле (Л.4)

Теперь найдем эквивалентную продолжительность пожара tэ для железобетонной плиты перекрытия при горении индустриального масла. По рисунку Л.4 получим tэ < 0,5 ч. Согласно условию задачи РА = Рп.о = 0, а по таблице Л.2 находим Ро = 0,6·10-5 м2/год. Тогда предельная вероятность Рп, вычисленная по формуле (Л.6), равна:

Интерполируя данные таблицы Л.4, находим, что Теперь вычислим коэффициент огнестойкости по формуле (Л.8):

Требуемый предел огнестойкости tо равен:

2. Определитьтребуемую огнестойкость железобетонной плиты перекрытия над участком механического цеха в условиях объемного пожара при свободном горении древесины с плотностью нагрузки 20 кг м. Размеры помещения 18??12??4 м, в помещении есть проем с размерами 4??3 м. Принять Рдоп = 10-6 м2/год.

Расчет.

Определим фактор проемности П. Объем помещения V равен

Тогда по формуле (Л.3) получаем

Характерную продолжительность пожара вычислим по формуле (Л.4) Общее количество пожарной нагрузки G равно

кг.

По формуле (Л.4) определяем, что

По рисунку Л.7 определяем эквивалентную продолжительность пожара tэ для железобетонной плиты перекрытия при вычисленных значениях П и tп. Получаем, что С учетом вычисленного в примере 1 значения Ко найдем требуемый предел огнестойкости tо

Рисунок Л.3.

Рисунок Л.4.

Зависимость эквивалентной продолжительности пожара tэ от продолжительности пожара для железобетонных и огнезащищенных металлических конструкций перекрытия в условиях локальных пожаров tл (или продолжительности НСП tНСП) при горении твердых и трудногорючих материалов.

Зависимость эквивалентной продолжительности пожара tэ от продолжительности пожара tл для железобетонных и огнезащищенных металлических конструкций перекрытия при горении ЛВЖ и ГЖ.

Рисунок Л.5.

Рисунок Л.6.

Зависимость эквивалентной продолжительности пожара tэ от продолжительности пожара tл для горизонтальных незащищенных металлических конструкций.

Зависимость эквивалентной продолжительности пожара tэ от продолжительности пожара tл для вертикальных незащищенных металлических конструкций.

1 – П = 0,25 м0,5; 2 – П = 0,20 м0,5; 3 - П = 0,18 м0,5; 4 - П = 0,15 м0,5; 5 - П = 0,12 м0,5; 6 - П = 0,08 м0,5; 7 - П = 0,04 м0,5.

1 – П = 0,25 м0,5; 2 – П = 0,20 м0,5; 3 - П = 0,18 м0,5;

4 - П = 0,15 м0,5; 5 - П = 0,12 м0,5; 6 - П = 0,08 м0,5;

7 - П = 0,04 м0,5.

Рисунок Л.7.

Рисунок Л.8.

Зависимость эквивалентной продолжительности пожара tэ от характерной продолжительности пожара tп для огнезащищенных металлических и железобетонных конструкций перекрытия

Зависимость эквивалентной продолжительности пожара tэ от характерной продолжительности объемного пожара tп для железобетонных несущих стен

1 – П = 0,25 м0,5; 2 – П = 0,20 м0,5; 3 - П = 0,18 м0,5; 4 - П = 0,15 м0,5; 5 - П = 0,12 м0,5; 6 - П = 0,08 м0,5;

7 - П = 0,04 м0,5.

Рисунок Л.9.

Зависимость эквивалентной продолжительности пожара tэ от характерного времени объемного пожара tп для центрально сжатых железобетонных колонн.

ПРИЛОЖЕНИЕ М

(рекомендуемое)

МЕТОД РАСЧЕТА РАЗМЕРА СЛИВНЫХ ОТВЕРСТИЙ.

М.1. Введение.

M.1.1. Настоящий метод устанавливает порядок расчета площади сливного отверстия в ограничивающем жидкость устройстве (поддоне, отсеке, огражденном бортиками участке цеха, производственной площадке и т. п.), при котором исключается перелив жидкости через борт ограничивающего устройства и растекание жидкости за его пределами.

М.1.2. В расчете учитывают поступление горючей жидкости в поддон из аппарата в момент его аварийного вскрытия, воды от установки пожаротушения и выгорание жидкости с поверхности поддона.

М.1.3. В методике расчета приняты следующие предположения:

- при возникновении аварийной ситуации герметичность стенок аппарата не нарушается;

- разрушаются только патрубки, лежащие ниже уровня жидкости в аппарате, образуя сливные отверстия, равные диаметру патрубков;

- вероятность одновременного разрушения двух патрубков мала;

- давление паров над поверхностью жидкости в аппарате в процессе слива жидкости не меняется.

М.2. Расчет площади сливных отверстий.

М.2.1. Для проведения расчета необходимо знать:

- количество трубопроводов n, расположенных ниже уровня горючей жидкости в аппарате, и площадь их поперечного сечения ??, м2;

- площадь поперечного сечения аппарата Fa, м2;

- высоту уровня жидкости над трубопроводами Н, м;

- высоту борта поддона L, м;

- интенсивность орошения водой, подаваемой из установок пожаротушения, площади поддона I, кг/(м2·с),

- скорость выгорания горючей жидкости W, кг/(м2·с);

- избыточное давление в аппарате над поверхностью жидкости р, Н/м2.

Целью расчета является выбор площади поддона Fп, м2, и расчет площади сливного отверстия f, м2.

М.2.2. По заданным исходным данным определить начальные расходы Qi, м3/с, жидкости из аппарата через отверстия, равные сечению трубопроводов, расположенных на аппарате, по формуле

(М.1)

где ?? = 0,65 - коэффициент истечения жидкости через отверстие;

?? i - площадь сечения i-го трубопровода;

g - ускорение силы тяжести, равное 9,81 м/с2,

Нi - высота уровня жидкости над i-м трубопроводом.

М.2.3. По наибольшему из вычисленных начальных расходов Qм выбрать площадь отверстия в аппарате ?? и высоту уровня жидкости над ним H0.

М.2.4. Из конструктивных соображений выбрать площадь поддона Fп, м2.

М.2.5. Определить т

(М.2)

где hmax = 0,8 L - максимально допустимый уровень жидкости в поддоне.

М.2.6. Вычислить объем жидкости, поступающей в поддон в единицу времени от установки пожаротушения (с учетом выгорания горючей жидкости) Q0, м3/с, по формуле

(М.3)

где ?? - плотность огнетушащей жидкости, кг/м3.

При отсутствии данных по скорости выгорания W следует положить равной нулю.

М.2.7. Если т < 1, то площадь сливного отверстия определить по формуле

(М.4)

М.2.8. При т 1 порядок расчета f следующий:

М.2.8.1. Определить напор, создаваемый сжатыми газами в аппарате

(М.5)

где ?? - плотность воды, кг/м3.

М.2.8.2. Вычислить значение параметра

(М.6)

где Qmax - максимальный расход жидкости из аппарата, определяемый по М.2.2.

М.2.8.3. По b с помощью таблицы M.1 необходимо найти а. Если данных таблицы M.1 для определения а недостаточно, то а определяют путем решения системы уравнений

(М.7)

Таблица M.1

Зависимость параметра а от b.

а

b

а

b

а

b

а

b

0,000

0,000

0,990

0,993

3,107

1,901

14,999

3,408

0,071

0,106

1,000

1,000

3,418

1,987

16,573

3,506

0,170

0,241

1,045

1,030

3,762

2,075

18,313

3,605

0,268

0,361

1,081

1,053

4,144

2,164

20,236

3,705

0,362

0,467

1,185

1,117

4,568

2,255

22,362

3,804

0,454

0,560

1,255

1,158

5,037

2,347

24,711

3,903

0,540

0,642

1,337

1,205

5,557

2,440

27,308

4.003

0,622

0,714

1,433

1,256

6,132

2,534

30,178

4,102

0,697

0,777

1,543

1,313

6,769

2,628

33,351

4,219

0,765

0,831

1,668

1,374

7,473

2,725

36,857

4,302

0,853

0,877

1,810

1,439

8,253

2,821

40,732

4,401

0,876

0,915

1,971

1,509

9,115

2,918

45,014

4,501

0,921

0,946

2,151

1,581

10,068

3,015

54,978

4,701

0,955

0,970

2,352

1,657

11,121

3,113

67,148

4,901

0,980

0,980

2,575

1,736

12,287

3,211

74,210

5,000

0,986

0,986

2,828

1,817

13,575

3,309