(4)

где Нт. теплота сгорания, Дж×кг-1;

rв — плотность воздуха до взрыва при начальной температуре Т0, кг×м-3;

Ср — теплоемкость воздуха, Дж×кг-1×К-1 (допускается принимать равной 1,01×103 Дж× кг-1×К-1;

Т0 — начальная температура воздуха, К.

3.7. В случае обращения в помещении горючих газов, легковоспламеняющихся или горючих жидкостей при определении значения массы т, входящей в формулы (1) и (4), допускается учитывать работу аварийной вентиляции, если она обеспечена резервными вентиляторами, автоматическим пуском при превышении предельно допустимой взрывобезопасной концентрации и электроснабжением по первой категории надежности (ПУЭ), при условии расположения устройств для удаления воздуха из помещения в непосредственной близости от места возможной аварии.

При этом массу т горючих газов или паров легковоспламеняющихся или горючих жидкостей, нагретых до температуры вспышки и выше, поступивших в объем помещения, следует разделить на коэффициент К, определяемый по формуле

К = АТ + 1, (5)

где А — кратность воздухообмена, создаваемого аварийной вентиляцией, с-1;

Т — продолжительность поступления горючих газов и паров легковоспламеняющихся и горючих жидкостей в объем помещения, с (принимается по п. 3.2.).

3.8. Масса m, кг, поступившего в помещение при расчетной аварии газа определяется по формуле

т = (Va + Vт) rr, (6)

где Vа объем газа, вышедшего из аппарата, м3;

Vт — объем газа, вышедшего из трубопроводов, м.

При этом

Vа = 0,01Р1V, (7)

где P1 давление в аппарате, кПа;

V — объем аппарата, м3;

Vт = V1т + V2т, (8)

где V1т объем газа, вышедшего из трубопровода до его отключения, м3;

V2т объем газа, вышедшего из трубопровода после его отключения, м3;

V1т= qT, (9)

q расход газа, определяемый в соответствии с технологическим регламентом в зависимости от давления в трубопроводе, его диаметра, температуры газовой среды и т.д., м3×с-1;

Т — время, определяемое по п. 3.2, с;

V2т = 0,01 p Р2(r21L1 + r22L2 + ... + r2nLn), (10)

P2 максимальное давление в трубопроводе по технологическому регламенту, кПа',

r — внутренний радиус трубопроводов, м;

L — длина трубопроводов от аварийного аппарата до задвижек, м.

3.9. Масса паров жидкости m, поступивших в помещение при наличии нескольких источников испарения (поверхность разлитой жидкости, поверхность со свеженанесенным составом, открытые емкости и т.п.), определяется из выражения

т = тр+ темк+ тсв.окр., (11)

где mр масса жидкости, испарившейся с поверхности разлива, кг;

темк — масса жидкости, испарившейся с поверхностей открытых емкостей, кг;

тсв.окр масса жидкости, испарившейся с поверхностей, на которые нанесен применяемый состав, кг.

При этом каждое из слагаемых в формуле (11) определяется по формуле

m = W FиT, (12)

где W интенсивность испарения, кг×с-1×м-2;

Fи — площадь испарения, м2, определяемая в соответствии с п. 3.2 в зависимости от массы жидкости тп, вышедшей в помещение.

Если аварийная ситуация связана с возможным поступлением жидкости в распыленном состоянии, то она должна быть учтена в формуле (11) введением дополнительного слагаемого, учитывающего общую массу поступившей жидкости от распыляющих устройств исходя из продолжительности их работ.

3.10. Масса тп, кг, вышедшей в помещение жидкости определяется в соответствии с п. 3.2.

3.11. Интенсивность испарения W определяется по справочным и экспериментальным данным. Для ненагретых выше температуры окружающей среды ЛВЖ при отсутствии данных допускается рассчитывать W no формуле

W = 10-6h Pн, (13)

где h коэффициент, принимаемый по табл. 3 в зависимости от скорости и температуры воздушного потока над поверхностью испарения;

Рн давление насыщенного пара при расчетной температуре жидкости tр, определяемое по справочным данным в соответствии с требованиями п. 1.4, кПа.

Таблица 3

Скорость воздушного потока в помещении,

Значение коэффициента h при температуре t, °С, воздуха в помещении

м×с-1

10

15

20

30

35

0

1,0

1,0

1,0

1,0

1,0

0,1

3,0

2,6

2,4

1,8

1,6

0,2

4,6

3,8

3,5

2,4

2,3

0,5

6,6

5,7

5,4

3,6

3,2

1,0

10,0

8,7

7,7

5,6

4,6

Расчет избыточного давления взрыва для горючих пылей

3.12. Расчет избыточного давления взрыва DР, кПа, производится по формуле (4), где коэффициент Z участия взвешенной пыли во взрыве рассчитывается по формуле

Z = 0,5 F, (14)

где F массовая доля частиц пыли размером менее критического, с превышением которого аэровзвесь становится взрыво-безопасной, т.е. неспособной распространять пламя. В отсутствие возможности получения сведений для расчета величины допускается принимать Z = 0,5.

3.13. Расчетная масса взвешенной в объеме помещения пыли т, кг, образовавшейся в результате аварийной ситуации, определяется по формуле

т = твз+ тав, (15)

где твз расчетная масса взвихрившейся пыли, кг;

тав расчетная масса пыли, поступившей в помещение в результате аварийной ситуации, кг.

3.14. Расчетная масса взвихрившейся пыли твз определяется по формуле

твз= Квзтп, (16)

где Квз — доля отложившейся в помещении пыли, способной перейти во взвешенное состояние в результате аварийной ситуации. При отсутствии экспериментальных сведений о величине Квз допускается полагать Квз = 0,9;

тп — масса отложившейся в помещении пыли к моменту аварии, кг.

3.15. Расчетная масса пыли, поступившей в помещение в результате аварийной ситуации, тав, определяется по формуле

тав = (тап + qТ)Кп, (17)

где тап — масса горючей пыли, выбрасываемой в помещение из аппарата, кг;

q производительность, с которой продолжается поступление пылевидных веществ в аварийный аппарат по трубопроводам до момента их отключения, кг×с-1;

Т — время отключения, определяемое по п.3.2, в, с;

Кп — коэффициент пыления, представляющий отношение массы взвешенной в воздухе пыли ко всей массе пыли, поступившей из аппарата в помещение. При отсутствии экспериментальных сведений о величине Кп допускается полагать:

для пылей с дисперсностью не менее 350 мкм — Кп = 0,5;

для пылей с дисперсностью менее 350 мкм — Кп = 1,0.

Величина тап принимается в соответствии с пп. 3.1 и 3.3.

3.16. Масса отложившейся в помещении пыли к моменту аварии определяется по формуле

(18)

где Кг доля горючей пыли в общей массе отложений пыли;

т1 масса пыли, оседающей на труднодоступных для уборки поверхностях в помещении за период времени между генеральными уборками, кг;

т2 — масса пыли, оседающей на доступных для уборки поверхностях в помещении за период времени между текущими уборками, кг;

Ку¾ коэффициент эффективности пылеуборки. Принимается при ручной пылсуборке:

сухой — 0,6;

влажной — 0,7.

При механизированной вакуумной уборке:

пол ровный — 0,9;

пол с выбоинами (до 5 % площади) — 0,7.

Под труднодоступными для уборки площадями подразумевают такие поверхности в производственных помещениях, очистка которых осуществляется только при генеральных пылеуборках. Доступными для уборки местами являются поверхности, пыль с которых удаляется в процессе текущих пылеуборок (ежесменно, ежесуточно и т.п.).

3.17. Масса пыли mi(i = 1,2), оседающей на различных поверхностях в помещении за межстрочный период, определяется по формуле

mi = Мi (1 - a)bi, (i = 1,2) (19)

где Мi = — масса пыли, выделяющаяся в объем помещения за период времени между генеральными пылеуборками, кг;

М1j — масса пыли, выделяемая единицей пылящего оборудования за указанный период, кг;

М2 = масса пыли, выделяющаяся в объем помещения за период времени между текущими пылеуборками, кг;

М2j — масса пыли, выделяемая единицей пылящего оборудования за указанный период, кг;

a — доля выделяющейся в объем помещения пыли, которая удаляется вытяжными вентиляционными системам При отсутствии экспериментальных сведений о величине a полагают a = 0;

b1, b2 ¾ доли выделяющейся в объем помещения пыли, оседающей соответственно на труднодоступных и доступных для уборки поверхностях помещения (b1 + b2= 1).

При отсутствии сведений о величине коэффициентов b1 и b2 допускается полагать b1 = 1, b2= 0.

3.18. Величина Мi(i = 1,2) может быть также определена экспериментально (или по аналогии с действующими образцами производств) в период максимальной загрузки оборудования по формуле

Мi = , (i = 1,2) (20)

где G1j, G2j интенсивность пылеотложений соответственно на труднодоступных F1j2) и доступных F2j2) площадях, кг×м-2с-1;

t1, t2 — промежуток времени соответственно между генеральными и текущими пылеуборками, с.

Определение категорий В1 — В4 помещений

3.19. Определение пожароопасной категории помещения осуществляется путем сравнения максимального значения удельной временной пожарной нагрузки (далее по тексту — пожарная нагрузка) на любом из участков с величиной удельной пожарной нагрузки, приведенной в табл. 4.

Таблица 4

Категория

Удельная пожарная нагрузка g на участке, МДж×м-2

Способ размещения

В1

Более 2200

Не нормируется

В2

1401 — 2200

См. п. 3.20

В3

181 ¾ 1400

То же

В4

1 ¾ 180

На любом участке пола помещения площадью 10 м2. Способ размещения участков пожарной нагрузки определяется согласно п. 3.20

3.20. При пожарной нагрузке, включающей и себя различные сочетания (смесь) горючих, трудногорючих жидкостей, твердых горючих и трудногорючих веществ и материалов в пределах пожароопасного участка, пожарная нагрузка Q, МДж, определяется по формуле

(21)

где G1 количество i-го материала пожарной нагрузки, кг;

Qpнi низшая теплота сгорания i-го материала пожарной нагрузки, МДж×кг-1.

Удельная пожарная нагрузка g, МДж×м-2, определяется из соотношения

g = , (22)

где S площадь размещения пожарной нагрузки, м2 (но не менее 10 м2).

В помещениях категорий В1 — В4 допускается наличие нескольких участков с пожарной нагрузкой, не превышающей значений, приведенных в табл. 4. В помещениях категории В4 расстояния между этими участками должны быть более предельных. В табл. 5 приведены рекомендуемые значения предельных расстояний lпр в зависимости от величины критической плотности падающих лучистых потоков qкр, кВт×м-2 для пожарном нагрузки, состоящей из твердых горючих и трудногорючих материалов. Значения lпр, приведенные в табл. 5, рекомендуются при условии, если Н > 11 м; если Н < 11 м, то предельное расстояние определяется как l = lпр + (11 - Н), где lпр — определяется из табл. 5, Н — минимальное расстояние от поверхности пожарной нагрузки до нижнего пояса ферм перекрытия (покрытия), м.

Таблица 5

qкр, кВт×м-2

5

10

15

20

25

30

40

50

lпр, м

12

8

6

5

4

3,8

3,2

2,8