Диаметр проволоки, мм

Предельная прочность проволоки при растяжении, кг

0,5

43

0,8

100

1,0

153

1,2

225

8.08. Проволока шахтного отвеса наматывается на ручную лебедку с диаметром барабана 250 - 300 мм. Груз состоит из штанги с основанием, на которое надевают чугунные шайбы по 5 или 10 кг каждая с радиальной прорезью.

8.09. Работы в стволе шахты, связанные с подготовкой мест для пропуска отвесов, выполняются заблаговременно.

Отвесы рекомендуется пропускать в местах с наименьшим «капежом» и не ближе 0,3 м от тюбинговой обделки ствола. При сильном «капеже», особенно в зимнее время, разрешается отвесы опустить в клетевом отделении.

Накануне ориентирования производится пробное опускание отвесов на всю глубину ствола.

8.10. Грузы шахтных отвесов, подвешенные на проволоках, опускаются в баки, наполненные жидкостью, успокаивающей отвесы (масло, вода со слоем масла толщиной 5 - 10 см и др.).

Баки изолируются от настила, по которому передвигаются наблюдатели. От «капежа» баки закрываются конусообразными колпаками с вырезом вверху для пропуска проволоки.

8.11. Отсутствие касаний проволоки отвеса в стволе шахты проверяется осмотром ее на всем протяжении, а также пропуском «почты».

8.12. При ориентировании шахты ляды лесоспуска и людского ходка должны быть закрыты. В момент наблюдения выключается вентиляция в стволе.

8.13. Примыкание к шахтным отвесам заключается в определении их координат и дирекционного угла створа отвесов на поверхности и передачи их на знаки полигонометрии под землей.

8.14. В практике тоннелестроения, при первых ориентированиях, для обеспечения проходки тоннеля до 50 м от ствола применяется непосредственное примыкание к створу шахтных отвесов.

При ориентированиях, обеспечивающих дальнейшее продвижение забоя, применяется косвенное примыкание к шахтным отвесам с помощью вытянутого соединительного треугольника.

В. Ориентирование по створу двух отвесов

8.15. При ориентировании способом створа двух отвесов на поверхности инструментальным путем по заранее заданному направлению выставляются два опущенных в шахту отвеса (рис. 8.1).

Установка этих отвесов в створ линии с известным дирекционным углом производится с максимально возможной точностью. Для этой цели возможно использование ориентировочных пластинок (см. ниже п. 8.21).

Внизу теодолит устанавливается над полигонометрическим знаком с ненакерненным центром. После установки инструмента в створе отвесов производится кернение центра, закрепление створных отвесов (используемых в дальнейшем для целей контроля) и измерение угла на другой полигонометрический знак. Если теодолит устанавливается не над полигонометрическим знаком, а на потерянной точке 1, но в створе отвесов (рис. 8.2), производится измерение дополнительных углов β1 и β2.

Передача координат с приствольного знака на поверхности на знаки подземной полигонометрии осуществляется путем измерения расстояний:

а) на поверхности - от инструмента до отвесов;

б) внизу - от инструмента до отвесов и до полигонометрических знаков.

Рис. 8.1. Ориентирование шахты способом створа двух отвесов:

1 - копер; 2 - ствол шахты; 3 - рудничный двор; 4 - зумпф; 5 - баки с маслом; 6 - шахтные отвесы; 7 - лебедки; 8 - теодолиты; 9 - полигонометрические знаки; 10 - створные отвесы

Рис. 8.2. Схема передачи дирекционного угла от створа отвесов на линию подземной полигонометрии

Г. Ориентирование способом соединительных треугольников

8.16. При удалении забоев от ствола шахты свыше 50 м производится ориентирование способом соединительных треугольников.

Рис. 8.3. Ориентирование шахты способом соединительных треугольников:

1 - отвесы с грузами; 2 - лебедки и центрировочные пластинки; 3 - баки с маслом; 4 - полигонометрические знаки; 5 - теодолиты; 6 - настил на брусьях для крепления пластинок и лебедок; 7 - ствол шахты и копер из тюбингов; 8 - околоствольный двор

Рис. 8.4. Пластинка для механического смещения отвесов:

1 - основание; 2 - салазки; 3 - ползунок; 4 - винт; 5 - прорезь; 6 - стопор; 7 - штрих.

8.17. При ориентировании способом соединительных треугольников в ствол опускаются два отвеса, которые наблюдаются с приствольных знаков на поверхности и внизу (рис. 8.3). Отвесы относительно инструментов располагаются так, чтобы формы соединительных треугольников, решаемых по формуле синусов, отвечали следующим требованиям:

а) измеряемые углы между отвесами ( и 1) должны быть минимальными (не более 2°);

б) расстояния от инструментов до ближайших отвесов выбираются минимальными, при этом значения отношений  и  не должны превышать величины 1,0.

8.18. Измерения углов и линий при ориентировании способом соединительных треугольников производят по правилам, приведенным в главах 2 и 9 (см. пп. 2.15 - 2.18, 2.21, 9.18, 9.23 - 9.26, 9.28).

8.19. При измерении углов на поверхности за начальные принимаются направления на азимутальный пункт или наиболее удаленный знак подходной полигонометрии. На подземном горизонте за начальное принимается направление на самый удаленный полигонометрический знак.

8.20. Если передача дирекционного угла к приствольному знаку возможна только через короткие линии, она осуществляется с помощью двух или трех инструментов (см. п. 9.32) от азимутального пункта или от линии основной полигонометрии.

При передаче дирекционного угла на приствольный стан с линий основной полигонометрии дирекционные углы этих линий подкрепляются передачей на них дирекционных углов непосредственно с пунктов триангуляции или через вспомогательные знаки.

8.21. При ориентировании по двум отвесам способом соединительных треугольников для смещения отвесов могут быть применены специальные пластинки (рис. 8.4).

Работы при ориентировании с помощью указанных пластинок производятся по следующей программе.

Первое положение отвесов:

а) установка ползунков обеих пластинок на среднее положение;

б) подвеска отвесов и проверка их «почтой»;

в) измерение вверху и внизу расстояний от инструмента до отвесов и между отвесами (расхождение в расстояниях между отвесами вверху и внизу не должно превышать 2 мм);

г) измерение направлений вверху - на азимутальный пункт, знаки подходной полигонометрии и на отвесы; внизу - на знаки подземной полигонометрии и на отвесы.

Второе положение отвесов: ползунки пластинок устанавливаются в крайнее правое положение, производится опускание «почты».

Третье положение отвесов: ползунки пластинок устанавливаются в крайнее левое положение, производится опускание «почты».

Угловые и линейные измерения при втором и третьем положениях отвесов производятся по программе, изложенной для первого положения отвесов.

8.22. Если центрировочные пластинки обеспечивают перемещение отвесов на заданную длину с точностью  0,2 мм и установлены перпендикулярно створу отвесов с отклонением не более 10°, то в этом случае можно произвести контроль правильности проектирования отвесов. Контроль производится путем сравнения результатов угловых измерений, полученных при первом и втором, а также при первом и третьем положениях отвесов (рис. 8.5), с рассчитанными значениями угла ??.

Рис. 8.5. Схема контроля при ориентировании шахты с помощью пластинок

Угол ?? между отвесами вычисляется по формуле

где а - смещение отвеса на пластинке;

S - расстояние от инструмента до отвеса;

???? = 206265??.

Расхождения между разностями измеренных углов на отвесы и рассчитанными значениями углов ?? не должны превышать:

а) для поверхности  12 при расстояниях от инструмента до отвеса 4 - 6 м и ?? 8?? при расстояниях свыше 6 м;

б) на подземном горизонте - соответственно ± 15 и  10.

Рис. 8.6. Ориентирование без закрепления приствольной точки на подземном горизонте:

1 - ствол; О1 и О2 - отвесы; I - точка стояния инструмента, не закрепленная в натуре; А и В - полигонометрические знаки

8.23. При пользовании оптическими центрирами необходимо производить перецентрировку инструментов после каждого перемещения отвесов с поворотом трегера на 120°; средние значения дирекционных углов подземных линий будут свободны от влияния ошибок юстировки центриров. В этом случае контролем углов не пользуются.

При работе инструментами, оптический центрир которых встроен в алидаду, перецентрировка теодолита не производится.

8.24. Ориентирование способом соединительных треугольников производится также и без закрепления приствольной точки на подземном горизонте (рис. 8.6). При этом должны быть соблюдены следующие условия:

а) инструмент устанавливается примерно в створе двух отвесов, т.е. угол ?? должен быть минимальным;

б) расстояние от инструмента до ближайшего отвеса должно быть минимальным (1,5 - 2,0 м), насколько это позволяет оптика теодолита;

в) угол АIВ должен быть в пределах от 0° до 30° или 150° - 180°. Если это выполнить невозможно, то необходимо измерить угол при А или В одновременно вторым инструментом.

8.25. При данной схеме ориентирования угловые и линейные измерения производятся по программе, изложенной в п. 8.21, с дополнительным измерением расстояний от инструмента до полигонометрических знаков А и В (см. рис. 8.6), а также между самими знаками.

Углы при точках А и В вычисляются по формуле синусов. Рекомендуется (для контроля) их измерить при помощи второго инструмента.

Д. Вычисление ориентирования, выполненного по способу соединительных треугольников

8.26. Перед вычислением ориентирования все полевые журналы должны быть проверены, после чего производится обработка результатов угловых и линейных измерений.

8.27. Решение соединительных треугольников, вычисление дирекционных углов и координат производятся независимо, в две руки.

Образец вычисления ориентирования шахты приведен в приложении 8-1.

8.28. Расхождения значений дирекционного угла, переданного с трех положений отвесов на исходную сторону подземной полигонометрии, не должны превышать 20??.

Е. Гироскопический способ ориентирования

8.29. Для ориентирования подземного обоснования при строительстве подземных сооружений могут применяться гироскопические теодолиты с ручным слежением Ги-Б1, с автоматическим слежением Ги-Б2, МТ-1, а также другие гиротеодолиты равной или большей точности.

8.30. Ориентирование стороны подземной полигонометрии гироскопическим способом с помощью гиротеодолита состоит из:

а) определения поправки гиротеодолита на стороне с известным дирекционным углом;

б) определения дирекционного угла ориентируемой стороны полигонометрии;

в) повторного определения поправки гиротеодолита на стороне с известным дирекционным углом.

8.31. Каждое определение поправки гиротеодолита производится одним-двумя пусками на одной из ближайших к ориентируемой шахте сторон наземной основной полигонометрии, дирекционный угол которой определен непосредственно с пункта триангуляции.

8.32. Определение поправки гиротеодолита должно предусматривать чередование получения поправки по прямому и обратному направлениям стороны полигонометрии.

С учетом этого сторону полигонометрии нужно выбирать так, чтобы имелась возможность постановки гироскопического теодолита на обоих ее концах.

8.33. В случае неоднократных ориентирований допускается использование поправки гиротеодолита предыдущего ориентирования, если с момента ее определения прошло не более месяца, если она подтверждена чередованием согласно п. 8.32 и в допустимых пределах согласуется с вновь определенной поправкой. Порядок работы, предусмотренный п. 8.30, при этом не изменяется.

Расхождение между значениями поправок является допустимым, если оно не превышает величины

где т - средняя квадратическая ошибка определения гироскопического азимута одним пуском;

п - количество пусков, которыми определена каждая из сравниваемых поправок.

Для гиротеодолита Ги-Б1 предельное допустимое расхождение составляет:

8.34. Ориентирование стороны подземной полигонометрии производится двумя определениями с постановкой гиротеодолита, как правило, на обоих концах ориентируемой стороны.

Если возможность постановки гиротеодолита имеется лишь на одном конце, производится ориентирование двух сторон полигонометрии при двух не совпадающих по местоположению постановках этого инструмента, после чего эти стороны связываются между собой угломерным ходом.

8.35. Длина стороны на поверхности для определения поправки гиротеодолита должна быть не менее 100 м.

Длина ориентируемой стороны в подземной выработке не должна быть меньше 30 м.

8.36. Прием (пуск) состоит из:

а) визирования и отсчета КЛ и КП по ориентируемому направлению;

б) определения нульпункта торсионного подвеса;

в) наблюдения вынужденных колебаний и вычисления положения динамического равновесия чувствительного элемента при работающем гиромоторе;

г) определения нульпункта торсионного подвеса;

д) визирования и отсчета КЛ и КП по ориентируемому направлению.

8.37. Нульпункт торсионного подвеса определяется не менее чем по четырем точкам реверсии свободных колебаний чувствительного элемента по формулам:

                                   

или

                                        

где Р1, Р2, Р0 - значения нульпункта;

р1, р2, ..., рi - отсчеты по шкале автоколлиматора в моменты реверсии свободных колебаний чувствительного элемента (ЧЭ).

Если нульпункт заметно изменяет свое значение от реверсии к реверсии («плывет»), определение его продолжают до получения трех согласующихся значений, которые и принимаются в подсчет среднего значения.

Расхождение значений нульпункта, полученных до пуска и после него, для гиротеодолита Ги-Б1 не должно превышать 2,0 делений шкалы автоколлиматора. В этом случае из этих значений выводится среднее. Если расхождение значений превышает допустимое, выявляют его причину и обосновывают принятие для вычислений одного из значений нульпункта. Величина нульпункта не должна быть более ?? 5 делений шкалы.