3.3 Индексы условных обозначений величин

Индексы в условных обозначениях величин обозначают следующее:

в - верхний предел измерений;

н - нижний предел измерений;

с - стандартные условия;

max - максимальное значение величины;

min - минимальное значение величины.

Знак "-" (черта над обозначением величины) - среднее значение величины или значение величины, рассчитанное по средним значениям параметров.

3.4 Сокращения

В стандарте применены следующие сокращения:

ИТ - измерительный трубопровод;

МС - местное сопротивление;

ПД - измерительный преобразователь давления или манометр;

ППД - измерительный преобразователь перепада давления или дифманометр;

ПТ - измерительный преобразователь температуры или термометр;

СИ - средства измерений;

СУ - сужающее устройство.

3.5 Единицы величин

В настоящем стандарте применены единицы Международной системы единиц (международное сокращенное наименование - SI).

Соотношения между единицами Международной системы и единицами других систем приведены в приложении А.

4 Условия проведения измерений

4.1 Условия проведения измерений должны соответствовать #M12291 1200047566ГОСТ 8.586.1#S (разделы 5, 6 и 7).

4.2 Характеристики окружающей среды при эксплуатации СИ должны соответствовать условиям применения СИ, установленным его изготовителем.

4.3 Диапазон измерений применяемого СИ должен быть не менее диапазона изменений измеряемой величины.

4.4 Метрологические характеристики СИ выбирают с учетом обеспечения необходимой неопределенности результатов измерений расхода и количества среды.

4.5 Характеристики энергоснабжения СИ в условиях эксплуатации должны соответствовать характеристикам СИ, установленным его изготовителем.

4.6 Измерения следует выполнять СИ, прошедшими поверку или калибровку в зависимости от сферы применения.

4.7 СИ применяют в соответствии с требованиями технической документации по их эксплуатации.

5 Метод измерений

5.1 Принцип метода

Принцип метода измерения расхода среды с помощью СУ изложен в #M12291 1200047566ГОСТ 8.586.1#S (раздел 5).

Количество среды определяют путем интегрирования расхода среды по времени.

5.2 Формулы для расчета расхода среды

5.2.1 Расход среды измеряют в единицах массового расхода, объемного расхода в рабочих условиях и объемного расхода, приведенного к стандартным условиям (в качестве стандартных условий принимают условия по #M12291 1200001401ГОСТ 2939#S).

Связь массового расхода с объемным расходом при рабочих условиях и объемным расходом, приведенным к стандартным условиям, устанавливает формула

. (5.1)

5.2.2 Массовый расход среды рассчитывают по формуле

. (5.2)

Объемный расход среды при рабочих условиях рассчитывают по формуле

. (5.3)

Объемный расход среды, приведенный к стандартным условиям, рассчитывают по формуле

. (5.4)

5.2.3 Если плотность среды в рабочих условиях рассчитывают по формуле

, (5.5)

то формулы (5.2), (5.3) и (5.4) примут вид, соответственно:

; (5.6)

; (5.7)

. (5.8)

5.2.4 Формулы для определения расхода сухой части влажного газа приведены в приложении Б.

5.2.5 Число Рейнольдса, в зависимости от единицы расхода среды, рассчитывают по соответствующей из следующих формул:

; (5.9)

; (5.10)

. (5.11)

5.3 Формулы для расчета количества среды

5.3.1 Количество среды (, , ), прошедшей по ИТ за определенный период времени, представляет собой интеграл функции расхода по времени , соответственно , , за этот период.

5.3.2 При дискретном интегрировании функций расхода по времени с интервалами дискретизации количество среды рассчитывают по формулам:

- при прямоугольной аппроксимации

; (5.12)

; (5.13)

; (5.14)

- при трапецеидальной аппроксимации

; (5.15)

; (5.16)

, (5.17)

где , и - значения функций , и в начале интервала соответственно;

, и - значения функций , и в конце интервала соответственно;

- число интервалов дискретизации в течение времени ();

и - время начала и конца периода времени интегрирования соответственно.

5.3.3 При дискретном интегрировании функций расхода по времени с равномерным интервалом дискретизации количество среды рассчитывают по формулам:

- при прямоугольной аппроксимации

; (5.18)

; (5.19)

; (5.20)

- при трапецеидальной аппроксимации

; (5.21)

; (5.22)

, (5.23)

где

. (5.24)

5.3.4 По известному значению среднего расхода , и за интервал времени () количество среды рассчитывают по формулам:

; (5.25)

; (5.26)

. (5.27)

5.3.4.1 При дискретном интегрировании функций расхода по времени с равномерным интервалом дискретизации средние значения , и вычисляют по одному из следующих вариантов:

а) при наличии полного массива значений , и в интервале времени () средние значения расхода среды рассчитывают по формулам:

; (5.28)

; (5.29)

; (5.30)

б) при поочередном в процессе интегрирования определении значений , и в интервале времени () средние значения расхода среды рассчитывают по формулам:

; (5.31)

; (5.32)

, (5.33)

где , и - средние значения , и на интервале времени () соответственно;

, и - средние значения , и на интервале времени () соответственно.

5.3.4.2 При известных средних значениях параметров потока и среды значения , и рассчитывают по формулам (5.2)-(5.8).

Примечание - Определение среднего значения расхода среды по средним значениям его аргументов приводит к появлению дополнительной составляющей неопределенности измерения количества среды, так как среднее значение нелинейных функций, к которым относятся уравнения расхода, не может быть точно определено через средние значения его аргументов.

5.3.5 Количество сухой части влажного газа рассчитывают по формулам, аналогичным в 5.3.2, 5.3.3 и 5.3.4.

5.4 Формулы для расчета энергосодержания горючих газов

5.4.1 Расход энергосодержания горючих газов рассчитывают по формулам:

; (5.34)

. (5.35)

5.4.2 Энергосодержание горючих газов определяют интегрированием функции по времени по формулам, аналогичным в 5.3.2, 5.3.3 и 5.3.4.

Энергосодержание горючих газов допускается рассчитывать по формулам:

; (5.36)

, (5.37)

где , - масса и объем газа, приведенный к стандартным условиям, соответственно, определенные за интервал ;

, - удельная массовая и объемная теплота сгорания горючего газа при стандартных условиях, соответственно, определенные на интервале ;

- -й интервал времени между двумя определениями значений или .

6 Средства измерений и требования к их монтажу

6.1 Общие положения

6.1.1 Для определения расхода и количества среды необходимо выполнять измерения переменных параметров потока и среды, входящих в уравнение расхода.

6.1.2 СИ и вспомогательные технические устройства, необходимые для измерения расхода и количества среды, выбирают исходя из условий их эксплуатации и технико-экономической целесообразности.

6.1.3 Для измерения параметров потока и среды применяют приборы с регистрацией результатов измерения на бумажных или электронных носителях, а также планиметры или электронные устройства для считывания графической информации, вычислительные устройства ручного или автоматического действия для обработки результатов измерений.

Для автоматизации процедуры измерения и определения расхода и количества среды в реальном масштабе времени применяют вычислительные устройства, которые принимают сигналы от измерительных преобразователей параметров потока и среды, автоматически обрабатывают их и выдают необходимую информацию о результатах измерений и вычислений.

6.1.4 Для определения значений условно-постоянных величин (параметров, принимаемых в качестве постоянных величин на определенный период, например час, сутки, месяц и т.д.) допускается применение показывающих приборов.

Условно-постоянные величины могут быть приняты равными ожидаемым значениям, прогнозируемым на основе ранее выполненных измерений или общих знаний об условиях измерений.

6.2 Средства измерений перепада давления и давления

6.2.1 Измерение перепада давления на сужающем устройстве

6.2.1.1 Перепад давления на СУ [см. #M12291 1200047566ГОСТ 8.586.1#S (пункт 3.1.4)] определяют подсоединением ППД через соединительные трубки к отверстиям для отбора давления или к отверстиям в кольцевых камерах усреднения, служащим для передачи давления к СИ.

6.2.1.2 Допускается подключение к одному СУ двух или более ППД.

6.2.1.3 Требования к монтажу ППД учитывают основные положения, изложенные в [1].

6.2.2 Разъединительные краны

Разъединительные краны предназначены для отделения СИ от ИТ.

Разъединительные краны рекомендуется помещать на соединительных трубках непосредственно у места их соединения с ИТ. При установке уравнительных (конденсационных) сосудов разъединительные краны (вентили) допускается монтировать непосредственно за ними.

Площадь проходного сечения крана должна быть не менее 64% площади сечения соединительной трубки.

В рабочем режиме разъединительные краны должны быть полностью открыты.

Рекомендуется отдавать предпочтение установке шаровых кранов.

6.2.3 Уравнительные (конденсационные) сосуды

6.2.3.1 При измерениях расхода пара соединительные трубки заполняются конденсатом. При измерениях перепада давления происходит нарушение равенства высоты столбов конденсата в обеих соединительных трубках вследствие перемещения части конденсата в ППД. Изменение уровней столбов конденсата приводит к появлению дополнительной составляющей неопределенности результатов измерений перепада давления.

Для уменьшения этой составляющей неопределенности результата измерения перепада давления применяют уравнительные (конденсационные) сосуды. На рисунке 1 приведены уравнительные сосуды, рекомендуемые [1]. Основные геометрические характеристики сосудов указаны в таблице 2.

Рисунок 1 - Уравнительные сосуды

Таблица 2 - Размеры конденсационных сосудов

#G0

Вход

Вход

Обозна-

чение размера

Патрубки с газовой резьбой

Приварные патрубки

Патрубки с газовой резьбой

Приварные патрубки

*

дюймы

мм

дюймы

мм

мм

см

1

1/2

-

1/2

-

8,7

230

5

800

-

21,3

1/2

-

-

21,3

-

21,3

2

1/2

-

1/2

-

8,7

100

5

250

-

21,3

1/2

-

-

21,3

-

21,3

3

5/8

-

5/8

-

8

230

7,1

700

-

24

5/8

-

-

24

-

24

4

5/8

-

5/8

-

8

100

7,1

220

-

24

5/8

-

-

24

-

24

5

-

24

-

24

8

230

7,1

600

6

-

24

-

24

8

100

7,1

170

* Вместимость уравнительного сосуда.