- число «пи»;

- коэффициент расхода при истечении свежей смеси и (или) продуктов сгорания через устройство взрыворазрежения (предохранительная мембрана, клапан, разгерметизатор и т. п.);

F - площадь разгерметизации (сбросного сечения), м2;

V - .максимальный внутренний объем сосуда, в котором возможно образование горючей газопаровой смеси, м3;

R = 8314 Дж??кмоль-1K-1 - универсальная газовая постоянная;

Tui - температура горючей смеси. К;

Мi - .молекулярная масса горючей смеси, кг??кмоль-1;

Sui - нормальная скорость распространения пламени при начальных значениях давления и температуры горючей смеси, м??с-1.

Другие обозначения в формулах (158) и (159):

- относительное максимально допустимое давление в аппарате, которое не приводит к его деформации и (или) разрушению;

Pm - абсолютное максимально допустимое давление внутри аппарата, которое не приводит к его деформации и (или) разрушению, Па;

Pi - абсолютное начальное давление горючей смеси в аппарате, при котором происходит инициирование горения, Па;

Р' - абсолютное давление в пространстве, в котором происходит истечение, в момент достижения максимального давления взрыва внутри аппарата (атмосфера, буферная емкость и т. п.), Па;

- относительное максимальное давление взрыва данной горючей смеси в замкнутом сосуде;

Ре - абсолютное максимальное давление взрыва данной горючей смеси в замкнутом сосуде при начальном давлении смеси Рi, Па;

Ei - коэффициент расширения продуктов сгорания смеси при начальных значениях давления и температуры;

- фактор турбулизации, представляющий собой в соответствии с принципом Гуи-Михельсона отношение действительной поверхности фронта пламени в аппарате к поверхности сферы, в которую можно собрать продукты сгорания, находящиеся в данный момент времени внутри сосуда.

2.2. Формулы (158) и (159) могут быть использованы как для определения безопасной площади разгерметизации при .проектировании оборудования по максимально допустимому относительному давлению взрыва в аппарате (прямая задача), так и для определения максимально допустимого начального давления горючей смеси Рi в аппарате, рассчитанном на максимальное давление Рm, с уже имеющимся сбросным люком площадью F, например при анализе аварий (обратная задача).

2.3. Формулы (158) и (159) охватывают весь диапазон возможных давлений взрыва в оборудовании с различной степенью негерметичности .

2.4. Формулы (158) и (159) записаны в безразмерных независимых переменных, вытекающих из условия автомодельности процесса развития взрыва в негерметичном сосуде, что делает их более универсальными и наглядными. Максимальное давление взрыва в негерметичном сосуде является инвариантом решения системы уравнений динамики развития взрыва при постоянном отношении фактора турбулизации к комплексу подобия W.

Погрешность определения диаметра сбросного сечения по инженерным формулам (158), (159) в сравнении с точным компьютерным решением системы дифференциальных уравнений динамики развития взрыва составляет около 10 %.

3. СТЕПЕНЬ ВЛИЯНИЯ РАЗЛИЧНЫХ ПАРАМЕТРОВ НА БЕЗОПАСНУЮ ПЛОЩАДЬ РАЗГЕРМЕТИЗАЦИИ

3.1. В настоящем методе реализован единый подход к расчету площади сбросного сечения, заключающийся в учете влияния различных параметров и условий на величину безопасной площади разгерметизации посредством соответствующего изменения значения фактора турбулизации.

3.2. Фактор турбулизации - основной параметр, оказывающий определяющее влияние на величину безопасной площади разгерметизации,

Погрешность определения термодинамических параметров - Еi, ??e, , где - показатель адиабаты продуктов сгорания смеси, входящих в расчетные формулы (158) и (159), составляет проценты, погрешность определения коэффициента расхода ??, молекулярной массы горючей смеси и нормальной скорости распространения пламени составляет десятки процентов. Ошибка в выборе значений объема аппарата, температуры и давления смеси также не превышает процентов или десятков процентов. Погрешность же в определении значения фактора турбулизации может составлять сотни процентов.

3.3. Расчет безопасной площади разгерметизации проводят для наиболее взрывоопасных (околостехиометрических) смесей, если не доказана невозможность их образования внутри аппарата.

4. ЗАВИСИМОСТЬ ФАКТОРА ТУРБУЛИЗАЦИИ ОТ УСЛОВИЙ РАЗВИТИЯ ВЗРЫВА

4.1. Зависимость фактора турбулизации от условий развития горения может быть представлена формулой

(161)

в которой эмпирические коэффициенты a1, a2, a3, a4 определяют по табл. 15.

Таблица 15

Эмпирические коэффициенты для расчета фактора турбулизации*

Условия развития горения**

эмпирические коэффициенты

a1

a2

a3

a4

Объем сосуда V до 10 м3; степень негерметичности F/V2/3 до 0,25

0,15

4

1

0

Объем сосуда V до 200 м3,:

начально открытые сбросные сечения

0

0

2

0

начально закрытые сбросные сечения

0

0

8

0

Объем сосуда V до 200м3, :

начально открытые сбросные сечения

0

0

0,8

1,2

начально закрытые сбросные сечения

0

0

2

6

Объем сосуда V до 10 м3; степень негерметичности F/V2/3 до 0,04; наличие сбросного трубопровода, :

без орошения истекающих газов

0

0

4

0

с орошением истекающих газов

0,15

4

1

0

_______________

* Для отсутствующих в таблице условий развития горения, например для оборудования объемом более 200 м3, значение фактора турбулизации определяют экспортно.

** Если в условиях развития горения значение какого-либо параметра не оговорено, то оно может быть любым в допустимом диапазоне.

4.2. Влияние объема аппарата

Для полых аппаратов объемом менее 1 м3 значение фактора турбулизации ?? =1??2.

С ростом объема аппарата значение фактора турбулизации увеличивается и для полых аппаратов объемом около 10 м3 ??=2,5??5 в зависимости от степени негерметичности (отношение F/V2/3) аппарата.

Для сосудов объемом до 200 м3 различной формы с незначительными встроенными внутрь элементами значение фактора турбулизации не превышает ??=8.

4.3. Влияние формы аппарата

Для технологического оборудования с отношением длины к диаметру до 5:1 можно считать, что форма аппарата не влияет на значение фактора турбулизации, так как увеличение поверхности пламени из-за его вытягивания во форме аппарата компенсируется уменьшением поверхности в результате более раннего касания пламенем стенок сосуда.

4.4. Влияние начальной герметизации аппарата

Для полых аппаратов объемом до 200 м3 с начально открытыми сбросными сечениями, например люками, значение фактора турбулизации не превышает ??=2, для аппаратов с начально закрытыми сбросными сечениями (мембраны, разгерметизаторы и т. д.) не превышает ??=8.

4.5. Влияние степени негерметичности аппарата F/V2/3

Увеличение степени негерметичности F/V2/3 в 10 раз (от 0,025 до 0,25), что равнозначно увеличению площади разгерметизации в 10 раз для одного и того же аппарата, приводит к возрастанию фактора турбулизации в 2 раза (для аппаратов объемом около 10 м3 с ??=2,5 до ??=5).

4.6. Влияние максимально допустимого давления взрыва в аппарате (коррелирует с влиянием давления разгерметизации)

При увеличении относительного максимально допустимого давления взрыва внутри оборудования (прочности оборудования) в диапазоне 1<??m??2 значение фактора турбулизации не изменяется. С ростом относительного максимально допустимого давления взрыва выше ??m>2 ( до ??m=??e) для начально открытых сбросных сечений значение фактора турбулизации снижается с 2 до 0,8, для начально закрытых - с 8 до 2. Этот результат согласуется с физическими представлениями о том, что при большем значении давления взрыва, которое выдерживает аппарат, меньше площадь сбросного сечения, а следовательно, фронт пламени подвергается меньшему возмущающему воздействию.

4.7. Влияние условий истечения

Если истечение горючей смеси и продуктов сгорания осуществляется через сбросный трубопровод, расположенный за разгерметизирующим элементом и имеющий диаметр, приблизительно равный диаметру сбросного отверстия, то значение фактора турбулизации вне зависимости от объема сосуда (до 15 м3) принимают ??=4 (для сосудов со степенью негерметичности F/V2/3 около 0,015??0,035, когда оснащение сосудов сбросным трубопроводом оправдано по соображениям разумного соотношения характерных размеров сосуда и трубопровода) при условии ??m<2.

При оснащении системы разгерметизации оросителем или другим аналогичным устройством, установленным в трубопроводе непосредственно за разгерметизатором для подачи хладагента в истекающую из аппарата смесь, значение фактора турбулизации принимают таким же, как при истечении непосредственно из аппарата в атмосферу. Эффект интенсификации горения в сосуде при cбpoce газов через трубопровод исчезает при увеличении давления разгерметизации до 0,2 МПа при начальном давлении 0,1 МПа.

4.8. Влияние условий разгерметизации

«Мгновенное» вскрытие сбросного сечения повышает вероятность возникновения вибрационного горения внутри аппарата. Амплитуда в акустической волне вибрационного горения может достигать значений ±0,1 МПа. Перемешивание смеси, например вентилятором, в процессе развития взрыва приводит к уменьшению амплитуды колебаний давления.

Плавное вскрытие сбросного отверстия, например с помощью малоинерционных крышек, снижает значение фактора турбулизации. В тех случаях, когда время срабатывания разгерметизирующего устройства соизмеримо с временем горения смеси в сосуде, при определении безопасной площади разгерметизации необходимо учитывать динамику вскрытия сбросного отверстия.

4.9. Влияние препятствий и турбулизаторов

Вопрос о влиянии различных препятствий на пути распространения пламени и турбулентности в смеси перед фронтом пламени является одним из определяющих в выборе значения фактора турбулизации. Наиболее правильным методом определения значения фактора турбулизации при наличии внутри аппарата сложных препятствий и турбулизованной смеси можно считать метод, основанный на сравнении расчетной и экспериментальной динамики (зависимость давление - время) взрыва.

Ускорение пламени на специальных препятствиях достигает значений ????15 и более уже в сосудах объемом около 10 м3.

Для углеводородовоздушных смесей турбулентное распространение пламени с автономной генерацией турбулентности внутри зоны горения характеризуется максимальным значением фактора турбулизации ??=3??4.

При искусственно создаваемой изотропной турбулентности максимальное значение фактора турбулизации при точечном зажигании не превышает ??=4??6. Дальнейшее увеличение степени изотропной турбулентности приводит к гашению пламени.

Для сосудов со встроенными и подвижными элементами, влияние которых на значение фактора турбулизации не может быть в настоящее время оценено, например с использованием литературных данных или экспертным методом, выбор фактора турбулизации должен быть ограничен снизу значением ??=8.

4.10. Коэффициент расхода ??

Коэффициент расхода ?? является эмпирическим коэффициентом, учитывающим влияние реальных условий истечения на величину расхода газа, определенную по известным теоретическим модельным соотношениям.

Для предохранительных мембран и разгерметизирующих устройств с непосредственным сбросом продукта взрыва в атмосферу, как правило, ??=0,6??1. При наличии сбросных трубопроводов ??=0,4??1 (включая случай с подачей хладагента в трубопровод непосредственно за мембраной).

Значение коэффициента расхода возрастает в указанном диапазоне с увеличением скорости истечения и температуры истекающего газа, с ростам фактора турбулизации.

Произведение коэффициента расхода на площадь разгерметизации ??F представляет собой эффективную площадь разгерметизации.

4.11. Аналог принципа Ле Шателье-Брауна

Согласно критериальному соотношению (158) относительное избыточное давление взрыва

??(162)

Теоретические и экспериментальные исследования процесса сгорания газа в негерметичном сосуде позволили установить аналог принципа Ле Шателье-Брауна: газодинамика горения газа в негерметичном сосуде реагирует на внешнее изменение условий протекания процесса в том направлении, при котором эффект внешнего воздействия ослабляется. Так, увеличение с целью снизить давление взрыва площади разгерметизации F в 10 раз в сосуде объемом порядка 10 м3 сопровождается увеличением фактора турбулизации ?? в 2 раза. Физическое объяснение наблюдаемого явления достаточно простое: с увеличением площади разгерметизации возрастает возмущающее воздействие на фронт пламени.

Избыточное давление взрыва коррелирует согласно критериальному соотношению (162) с отношением (??????)2, а не просто ??. Уменьшение размера ячейки турбулизирующей решетки, приводящее к возрастанию фактора турбулизации в 1,75 раза (с 8 до 14), сопровождается существенно меньшим увеличением отношения ?????? - лишь в 1,1 раза. Сказанное необходимо учитывать при значениях фактора турбулизации ????5.

5. ОПРЕДЕЛЕНИЕ НОРМАЛЬНОЙ СКОРОСТИ РАСПРОСТРАНЕНИЯ ПЛАМЕНИ И ТЕРМОДИНАМИЧЕСКИХ ПАРАМЕТРОВ