RA - активное сопротивление анодных проводников, Ом;

RB - активное сопротивление вентиля (с учетом n последовательно и m параллельно соединенных полупроводниковых приборов), Ом;

4.1.8. Определяемые параметры, характеризующие сеть постоянного тока:

Rкб - активное сопротивление выводных полюсных кабелей, Ом;

Rп - активное сопротивление питающего (+) кабеля, Ом;

Ro - активное сопротивление отсасывающего (-) кабеля, Ом;

Rз - сопротивление земли растеканию постоянного тока, Ом;

Rзк - сопротивление заземляющего контура (заземлителя), Ом;

Rdl - активное сопротивление линии постоянного тока, Ом.

4.2. Расчет токов при коротком замыкании полюсов выпрямительного преобразователя

4.2.1. Расчетные схемы и схемы замещения

4.2.1.1. При составлении схемы замещения (черт. 4) параметры элементов расчетной схемы следует привести к ступени напряжения вторичной (вентильной) обмотки преобразовательного трансформатора в системе именованных единиц. Рекомендуемые формулы для расчета параметров схем замещения приведены в приложении 8.


Расчетная электрическая схема (а) и схема замещения (б) электроустановки с выпрямительным агрегатом



Черт. 4


4.2.1.2. Схемы замещения трехфазных вентильных преобразователей, выполненных по схеме две обратные звезды с уравнительным реактором и по трехфазной мостовой схеме, приведены на черт. 5.

4.2.1.3. Катодный реактор с параметрами Xd, Rd при оценке условий КЗ следует рассматривать как токоограничивающий, а при оценке условий нормальной работы нагрузки на постоянном токе - как сглаживающий.

4.2.1.4. Расчеты токов КЗ в установках, выполненных по схеме двенадцатифазного преобразования, следует выполнять с применением ЭВМ, используя, например, матрично-топологические методы расчета разветвленных цепей.

4.2.2. Расчетные условия

4.2.2.1. Токи КЗ для выбора и проверки агрегатного оборудования по условиям КЗ, а также для выбора защитных устройств следует рассчитывать при наиболее тяжелых условиях:

- КЗ полюсов выпрямителя не сопровождается дуговыми явлениями в месте повреждения (исключая электроустановки с токами КЗ выше 100 кА);

- момент возникновения КЗ совпадает с моментом открытия какого-либо вентиля.

4.2.2.2. Расчету подлежат амплитуда периодической составляющей фазного тока вторичной обмотки преобразовательного трансформатора, максимальное значение тока КЗ в цепи переменного тока и вентилей, ударный ток, протекающий в полупроводниковом приборе, максимальное и среднее значения выпрямленного тока в месте повреждения.

Кроме того, проверяют тепловое действие тока КЗ на полупроводниковый прибор.

4.2.3. Расчет токов в случае КЗ полюсов неуправляемого выпрямительного агрегата при отсутствии (без учета) катодного реактора

4.2.3.1. При расчете токов в случае, когда неуправляемый выпрямитель не имеет катодного реактора, следует учитывать, что КЗ полюсов такого выпрямителя эквивалентно трехфазному КЗ вторичных (вентильных) обмоток преобразовательного трансформатора.

4.2.3.2. Амплитуду периодической составляющей фазного тока вторичной (вентильной) обмотки преобразовательного трансформатора (Im) в амперах следует определять по выражению

, (34)

где E - действующее значение фазной ЭДС трехфазной системы переменного тока, В;

R - суммарное активное сопротивление элементов одной фазы переменного тока, Ом;

X - суммарное индуктивное сопротивление элементов одной фазы переменного тока, Ом.

Указанные параметры следует определять по формулам:

;

R = Rc + Rт + RА + RВ;

RВ = Rд / (n / m);

X = Xc + Xт.

4.2.3.3. Максимальное значение тока КЗ в цепи переменного тока и вентилей (Imax) в амперах следует определять по соотношению

Imax = (Imax / Im) Im, (35)

где Imax / Im - ударный коэффициент цепи КЗ, определяемый по кривой 1 на черт. 6, в зависимости от отношения R/X короткозамкнутой цепи.


Схемы замещения преобразователей (при их работе группами по 2-3 вентиля)



а - две обратные звезды с уравнительным реактором; б - трехфазная мостовая


Черт. 5

Зависимость отношения максимальной амплитуды тока КЗ к амплитуде периодической составляющей этого тока от отношения R/X короткозамкнутой цепи



1 - неуправляемый выпрямитель; 2 - управляемый выпрямитель с электронной защитой


Черт. 6


4.2.3.4. Ударный ток, протекающий в полупроводниковом приборе, (iуд) в амперах следует определять с учетом m параллельных ветвей в цепи группового вентиля, т. е.

iуд = Imax / m. (36)

4.2.3.5. Тепловое действие тока КЗ на полупроводниковый прибор следует проверять, используя соотношение

, (37)

где tk - продолжительность короткого замыкания, с;

Iэф - эффективное значение тока, протекающего через вентиль во время КЗ, которое допустимо принимать равным при tk 20 мс и при tk > 20 мс.

4.2.3.6. Максимальное значение выпрямленного тока в месте повреждения (Idmax) в амперах следует определять по формулам:

при выполнении преобразователей по схеме две обратные звезды с уравнительным реактором

Idmax = 2Imax; (38)

при выполнении преобразователей по трехфазной мостовой схеме

Idmax = Imax. (39)

Примечание. При наличии в цепях групповых вентилей моста анодных реакторов следует использовать формулу

Idmax = 2,61 Im,

где ,

Xap - индуктивное сопротивление анодного реактора, Ом.


4.2.3.7. Среднее значение выпрямленного тока в месте повреждения при установившемся режиме КЗ следует определять по формулам:

при выполнении преобразователей по схеме две обратные звезды с уравнительным реактором

Iду = (6 / ) Im; (40)

при выполнении преобразователей по трехфазной мостовой схеме

Iду = (3 / ) Im. (41)

4.2.4. Расчет токов в случае КЗ полюсов неуправляемого выпрямителя при наличии (при учете) катодного реактора

4.2.4.1. Если неуправляемый выпрямитель имеет катодный реактор, то при расчете токов допустимо считать, что выпрямленный ток идеально сглажен.

4.2.4.2. Расчетным режимом в рассматриваемом случае следует считать установившийся режим КЗ (так как начальные токи КЗ существенно ограничены катодным реактором). При этом следует учитывать, что в установившемся режиме КЗ полюсов неуправляемого выпрямителя с катодным реактором приводит к трехфазному КЗ вторичных (вентильных) обмоток преобразовательного трансформатора.

4.2.4.3. Среднее значение выпрямленного тока в месте повреждения в установившемся режиме КЗ (Idy) в амперах следует определять по формулам:

- без учета активных сопротивлений цепей постоянного тока и выполнении преобразователей по схеме две обратные звезды с уравнительным реактором

Idy = 2 Im; (42)

- с учетом активных сопротивлений цепей постоянного тока и той же схеме выпрямления

; (43)

- без учета активных сопротивлений цепей постоянного тока и выполнении преобразователей по трехфазной мостовой схеме

Idy = Im; (44)

- с учетом активных сопротивлений цепей постоянного тока и той же схеме выпрямления

; (45)

где Rd - суммарное активное сопротивление короткозамкнутых цепей постоянного тока выпрямительного агрегата, Ом, которое в общем случае равно

Rd = Rd + Rош + Rкб + Rпк + Rтк, (46)

где Rd - сопротивление катодного реактора, Ом;

Rош - сопротивление ошиновки, Ом;

Rкб - сопротивление выводных кабелей, Ом;

Rпк - переходное сопротивление контактных соединений, Ом;

Rтк - сопротивление токовых катушек, Ом.

4.2.5. Расчет токов при КЗ полюсов управляемого выпрямителя

4.2.5.1. Если управляемый выпрямитель не имеет электронной защиты вентилей (тиристоров) и быстродействующей системы регулирования углов, то расчет токов при КЗ полюсов выпрямителя следует производить, как указано в пп. 4.2.3 и 4.2.4. При этом расчетy подлежат амплитуда периодической составляющей тока короткозамкнутой цепи, максимальное значение тока этой цепи и ударный ток, протекающий в полупроводниковом приборе. Кроме того, проверяют тепловое действие на полупроводниковый прибор.

4.2.5.2. Если управляемый выпрямитель имеет электронную защиту вентилей (тиристоров), то следует учитывать, что при возникновении КЗ полюсов выпрямителя и успешной работе электронной защиты имеют место:

1) при выполнении преобразователей по трехфазной мостовой схеме (см. черт. 5б) - однократное двухфазное КЗ вентильной обмотки преобразовательного трансформатора;

2) при выполнении преобразователей по схеме две обратные звезды с уравнительным реактором (см. черт. 5а) - однократное однофазное КЗ каждой вентильной обмотки преобразовательного трансформатора.

4.2.5.3. Амплитуду периодической составляющей тока короткозамкнутой цепи (обмоток трансформатора, вентилей и катодного реактора) (Im) в амперах следует определять по выражениям:

- при выполнении преобразователей по схеме две обратные звезды с уравнительным реактором

; (47)

- при выполнении преобразователей по трехфазной мостовой схеме

, (48)

где  - угловая частота переменного тока, 1/с.

4.2.5.4. Максимальное значение тока короткозамкнутой цепи (обмоток трансформатора, вентилей и катодного реактора) (Imax) в амперах следует определять по формуле (36), а входящий в нее ударный коэффициент цепи КЗ Imax / Im - по кривой 2 на черт. 6, в зависимости от отношения R / X короткозамкнутой цепи и угла включения  вентилей преобразователя.

4.2.5.5. Ударный ток, протекающий в полупроводниковом приборе, (iуд) в амперах следует определять с учетом m параллельных ветвей в цепи группового вентиля, используя формулу (36).

4.2.5.6. Тепловое действие тока КЗ на полупроводниковый прибор следует проверять, используя соотношение

, (49)

где tk - продолжительность короткого замыкания, с, которая, в зависимости от отношения R/X короткозамкнутой цепи, составляет 12-15 мс.

4.2.5.7. При учете вероятности отказа или неуспешной работы электронной защиты вентилей (тиристоров) токи при КЗ полюсов выпрямителя следует рассчитывать, как указано в пп. 4.2.3 и 4.2.4.

4.2.5.8. Если управляемый выпрямитель имеет быстродействующую систему регулирования углов включения (без блокировки импульсов управления), то токи КЗ в произвольный момент времени следует рассчитывать методом математического моделирования переходных процессов с применением ЭВМ.

Допускается применение отраслевых программ.


4.3. Расчет токов при КЗ в контактной сети постоянного тока тяговых подстанций

4.3.1. Расчетная схема и схемы замещения

4.3.1.1. При расчете токов КЗ в контактной сети постоянного тока тяговых подстанций следует использовать типовую схему подключения контактной сети постоянного тока к тяговой преобразовательной подстанции, которая приведена на черт. 7. Соответствующая этой расчетной схеме схема замещения цепей КЗ при повреждениях в контактной сети тяговой (троллейбусной) подстанции приведена на черт. 8, где указаны цепи при КЗ полюсов в контактной сети (К3) и замыкании положительного полюса на землю (К4). Схема замещения цепей КЗ при повреждениях в контактной сети тяговых (железнодорожных) подстанций при одностороннем питании контактной сети приведена на черт. 9а, а при двустороннем питании - на черт. 9б.


Электрическая схема типовой подстанции и контактной сети



Черт. 7


Схема замещения цепи КЗ при повреждениях в контактной сети тяговой (троллейбусной) подстанции



Черт. 8


Схемы замещения цепи КЗ при повреждении в контактной сети тяговых (железнодорожных) подстанций



а - одностороннее питание контактной сети; б - двустороннее питание контактной сети на двухпутном участке с постом секционирования


Черт. 9


4.3.2. Расчетные условия, допущения

4.3.2.1. Расчетными режимами следует считать установившиеся режимы КЗ. При этом расчету подлежат максимальные и минимальные значения установившихся токов КЗ в зоне обслуживания тяговой подстанции.

Максимальные значения токов следует рассчитывать, пренебрегая дуговыми явлениями в месте повреждения и принимая минимальную удаленность точки КЗ от источника энергии (преобразователя) постоянного тока (при Uд = 0, lk = 0), а минимальные значения токов - с учетом дуговых явлений и при максимальной удаленности точки КЗ (при Uд 0, lk = lkmax).

4.3.2.2. При расчете токов КЗ в контактной сети постоянного тока вентильный преобразователь допустимо характеризовать средними интегральными параметрами.

4.3.3. Расчет токов при КЗ в контактной сети постоянного тока тяговой подстанции городского транспорта

4.3.3.1. При отсутствии (неучете) катодных реакторов в выпрямительных агрегатах тяговой подстанции ток КЗ (Ik) в амперах следует определять в соответствии со схемой замещения, приведенной на черт. 8, по формулам: