ГОСТ 30290—94

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МАТЕРИАЛЫ И ИЗДЕЛИЯ СТРОИТЕЛЬНЫЕ

Метод определения теплопроводности поверхностным преобразователем

Building materials and products.

Surface convepter method of thermal conductivity determination

Дата введения 1996—01—01

Предисловие

1 РАЗРАБОТАН Научно-исследовательским институтом строительной физики (НИИСФ) Российской Федерации

ВНЕСЕН Минстроем России

2 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации и техническому нормированию в строительстве (МНТКС) 10 ноября 1993 г.

За принятие проголосовали

Наименование государства

Наименование органа государственного управления строительством

Азербайджанская Республика

Республика Армения

Республика Беларусь

Республика Казахстан

Кыргызская Республика

Республика Молдова

Российская Федерация

Республика Таджикистан

Госстрой Азербайджанской Республики

Госупрархитектуры Республики Армения

Госстрой Республики Беларусь

Минстрой Республики Казахстан

Госстрой Кыргызской Республики

Минархстрой Республики Молдова

Минстрой России

Госстрой Республики Таджикистан

3 ВВЕДЕН В ДЕЙСТВИЕ с 1 января 1996 г. в качестве государственного стандарта Российской Федерации Постановлением Минстроя России от 29 мая 1995 г. № 18—49

4 ВВЕДЕН ВПЕРВЫЕ

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт распространяется на строительные материалы и изделия теплопроводностью от 0,02 до 1 Вт/(м·К) и устанавливает метод неразрушающего ускоренного определения теплопроводности в интервале температур 278—313 К (5—40°С).

Метод заключается в создании одностороннего кратковременного теплового импульса на поверхности изделия и регистрации изменения температуры на этой поверхности.

Стандарт не распространяется на многослойные изделия.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8.315—91 ГСИ. Стандартные образцы. Основные положения, порядок разработки, аттестации, утверждения, регистрации и применения

ГОСТ 12730.2—78 Бетоны. Метод определения влажности

ГОСТ 21718—84 Материалы строительные. Диэлькометрический метод измерения влажности

ГОСТ 23422—87 Материалы строительные. Нейтронный метод определения влажности

ГОСТ 23468—85 Микрокалькуляторы. Общие технические условия

3 СРЕДСТВА ИСПЫТАНИЙ

3.1 Для испытаний применяют измерительный комплекс (рисунок 1), состоящий из:

— первичного преобразователя, предназначенного для преобразования импульса электрической энергии в тепловую и создания электрического сигнала, характеризующего изменение температуры поверхности материала изделия под воздействием теплового импульса. Техническая характеристика первичного преобразователя приведена в приложении А;

— вторичного измерительного прибора для регистрации электрического сигнала;

— импульсного источника тока с таймером теплового импульса (приложения Б, В), обеспечивающего нагрев пластины первичного преобразователя.

3.2 В качестве вторичного измерительного прибора применяют вольтметр чувствительностью не хуже 1·10-6 В с цифропечатающим автономным или встроенным устройством и таймером опроса датчика (приложение Г), задающим интервалы регистрации.

Допускается применение других измерительных приборов, удовлетворяющих требованию настоящего стандарта.

1 — исследуемое изделие; 2 — первичный преобразователь; 3 — вторичный измерительный прибор для регистрации электрического сигнала; 4 — импульсный источник тока с таймером теплового импульса; 5 — основание

Рисунок 1 — Блок-схема измерительного комплекса для определения теплопроводности материалов изделий

4 ПОДГОТОВКА К ПРОВЕДЕНИЮ ИСПЫТАНИЙ

4.1 Для испытаний отбирают изделия, соответствующие требованиям нормативных документов на эти изделия. Изделия должны иметь плоскую поверхность для размещения первичного преобразователя и обеспечения теплового контакта между ними.

Допускается определять теплопроводность на изделиях правильной и неправильной формы.

4.2 Количество изделий, отбираемых для испытания, устанавливают в нормативных документах на эти изделия, но не менее трех.

4.3 Для испытаний сыпучих материалов их засыпают в рамку размером 300х300х50 мм, выравнивают поверхность исследуемого материала для создания теплового контакта с размещенным на нем первичным преобразователем. Размер гранул испытываемого сыпучего материала должен быть не более 5 мм.

4.4 Теплопроводность материалов изделий определяют в сухом и влажном состоянии. Влажность материалов изделий определяют согласно нормативным документам на изделия и методы определения влажности (ГОСТ 21718, ГОСТ 23422 или ГОСТ 12730.2).

5 ПРОВЕДЕНИЕ ИСПЫТАНИЙ

5.1 Испытания проводят при установившемся тепловом равновесии между исследуемым изделием, телом первичного преобразователя и окружающей средой, для чего устанавливают первичный преобразователь на поверхность изделия, подготовленного к испытаниям в соответствии с разделом 4, и выдерживают до появления на табло вторичного измерительного прибора установившихся показаний.

При испытании изделия толщиной менее 15 мм одна из его поверхностей должна находиться в тепловом контакте с поверхностью массивного основания (рисунок 1).

5.2 Регистрируют установившийся сигнал, поступающий от первичного преобразователя, и включают цифровую печать.

5.3 Подают тепловой импульс нажатием соответствующей пусковой кнопки.

5.4 Через равные промежутки времени, автоматически устанавливаемые вторичным измерительным прибором, регистрируют изменение сигнала, пропорционального избыточной температуре поверхности исследуемого изделия. Регистрацию проводят до появления повторяющихся значений.

5.5 Измерения проводят не менее чем на пяти участках поверхности исследуемого изделия, в том числе на участках с неоднородными по теплопроводности включениями.

6 ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ

6.1 Элементам массива экспериментальных данных присваивают порядковые номера n = 1, 2, ... i, ... , k, ... , l, ... , m, ... , n с момента подачи теплового импульса. Выделяют рабочую область экспериментального массива (область nmin < n < nmах), определяемую при градуировке измерительного комплекса в зависимости от плотности исследуемого материала (приложение Д).

Пример обработки экспериментального массива приведен в приложении Е.

6.2 При проведении испытаний изделии толщиной более 15 мм теплопроводность А в ваттах на метр-кельвин для одного измерения вычисляют по формуле

(1)

, (2)

, (3)

, (4)

, (5)

где Ca, Сr, bэ, аэ — коэффициенты, определяемые при градуировке и зависящие от мощности теплового импульса, чувствительности датчика температуры, размеров нагревателя, теплофизических свойств тела первичного преобразователя;

l и т — порядковые номера элементов рабочей зоны, удовлетворяющие условиям

l > nmin; m < nmах; m = 2l;

xl и хm — величины, вычисляемые как алгебраическая разность показаний регистрирующего устройства до и после подачи импульса в моменты времени, соответствующие l и т (приложение Е).

Теплопроводность рекомендуется рассчитывать на микрокалькуляторе типа МК-56 по ГОСТ 23468 или другом программирующем устройстве, имеющем не менее 14 ячеек памяти, по программе, приведенной в приложении Ж.

Допускается графическая обработка экспериментального массива в соответствии с приложением И.

6.3 При проведении испытаний изделий толщиной менее 15 мм теплопроводность исследуемого материала для одного измерения вычисляют по формуле

10

Пх4

64

32

В

ОЕ

54.

Пxc

11

21

33

Пxa

6—

55

х

12

12

ОЕ:

34

11

56

Пх6

66

13

Пх3

63

35

ПхО

60

57

х

12

14

х

12

36

x

12

58

21

15

F1/x

23

37

xПd

59

xПO

60

16

ПxB

61

38

Пх8

68

60

Пх7

67

17

x

12

39

В­

ОЕ

61

В

ОЕ

18

xП8

48

40

Пх7

67

62

Пxa

6—

19

Пх6

66

41

11

63

11

20

21

42

xПO

40

64

ПхО

60

21

ОЕ

43

Пх9

69

65

x

12

22

Пх5

65

44

В­

ОЕ

66

СП

50

Градуировочные коэффициенты

Экспериментальный массив

Исходные данные

Ячейки памяти

Исходные дачные

Ячейки памяти

CQ

CR

CR/aэ

3

9

6

8

ni

nl

nm

Xi

Xl

Xm

2

4

6

1

3

5

ПРИЛОЖЕНИЕ И

(рекомендуемое)

ГРАФИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ

Для графической обработки результатов испытаний в координатах х и n строят фрагменты экспериментального массива (рисунок И.1) и находят точку пересечения экспериментальной кривой с характеристической прямой р. Длину полученного на прямой р отрезка от оси абсцисс до точки пересечения с экспериментальной кривой откладывают по оси абсцисс рисунка И.2, восстанавливают перпендикуляр до пересечения с кривой l = f(р) и на оси ординат находят значение.

Две характеристические линии р и l = f(р) (рисунки И.1 и И.2) получают экспериментальным путем на группе материалов (не менее пяти) с известными значениями теплопроводности.

В координатах х и n строят для каждого материала соответствующий экспериментальный массив х -fi(n), находят границы области стабильности согласно рисунка Д.1 и проводят в этой области секущую характеристическую прямую р.

Затем в координатах l и р строят характеристическую линию l = f(p) (рисунок И.2), откладывая по оси абсцисс длины отрезков (рисунок И.1) от точки пересечения О секущей р с осью абсцисс до точки пересечения р с кривой х = fi(n) для каждого материала, а по оси l — соответствующее известное значение теплопроводности этого материала.

Рисунок И.1 — Экспериментальный массив х = fi(n) с границами области стабильности определения теплопроводности и характеристическая прямая р для графического определения теплопроводности материала.

Рисунок И.2 — Зависимость значений теплопроводности от длины отрезка, отсекаемого на характеристической линии р экспериментальной кривой х =fi(n).

ПРИЛОЖЕНИЕ К

(рекомендуемое)

ПРИМЕР ГРАДУИРОВКИ ИЗМЕРИТЕЛЬНОГО КОМПЛЕКСА

Таблицы Е.1 и Е.2 результатов первичной обработки экспериментальных данных содержат величины с целью иллюстрации методики градуировки измерительного комплекса, когда в полученных массивах выделяют области, где выполняется условие = const. Из таблиц следует, что условие = const выполняется на участке массива n = 3, 4, 5 для пенобетона и на участке n = 3, 4, 5, 6, 7 для пенополистирола.

Среднее значение для образца пенобетона составляет 1076, для образца пенополистирола — 1455.

Чтобы воспользоваться формулами (Д.1) и (Д.2), находят тепловые активности материалов образцов по формуле (Д.3), при этом для пенобетона Ср = 840·400 Дж/(м3·К), b1 = 183 Дж/(м2 ·с1/2 ·К); для пенополистирола Ср = 840·150 Дж/(м3 ·К), b2 = 198 Дж/(м2·с1/2 ·К)

По формулам (Д.1) и (Д.2) находят bэ = 115 и СQ = 310000