ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

РАСЧЕТ ТЕРМИЧЕСКИ ДОПУСТИМЫХ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ С УЧЕТОМ НЕАДИАБАТИЧЕСКОГО НАГРЕВА

ГОСТ 28895-91 (МЭК 949-88)

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО УПРАВЛЕНИЮ КАЧЕСТВОМ ПРОДУКЦИИ И СТАНДАРТАМ

Москва

СОДЕРЖАНИЕ

1. Обозначения. 2

2. Допустимый ток короткого замыкания. 3

3. Расчет адиабатического тока короткого замыкания. 3

4. Расчет температуры при коротком замыкании. 4

5. Расчет неадиабатического коэффициента для токопроводящих жил и расположенных на расстоянии друг от друга проволок экранов. 4

6. Расчет неадиабатического коэффициента для оболочек, экранов и проволок брони. 5

Приложение А Пояснения к рекомендуемым методам учета неадиабатического нагрева при расчете допустимых токов короткого замыкания. 7

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

РАСЧЕТ ТЕРМИЧЕСКИ ДОПУСТИМЫХ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ С УЧЕТОМ НЕАДИАБАТИЧЕСКОГО НАГРЕВА

Calculation of thermally permissible short-circuit currents, taking into account non-adiabatic heating effects

ГОСТ 28895-91

(МЭК 949-88)

Дата введения 01.01.93

Метод расчета номинальных характеристик любого токоведущего элемента кабеля при коротком замыкании основывается на предположении, что тепло сохраняется внутри токоведущего элемента в течение времени короткого замыкания (т.е. имеет место адиабатический нагрев). Однако во время короткого замыкания происходит передача тепла в соседние материалы и это следует учитывать.

В настоящем стандарте приведен простой метод учета неадиабатического характера нагрева при расчете номинальных характеристик в условиях короткого замыкания, что обеспечивает получение одинаковых значений номинальных характеристик различными разработчиками. Существуют методы расчета с использованием ЭВМ, но они не намного точнее и слишком сложны для стандартизации.

В формулах содержатся значения, которые зависят от вида используемых в кабелях материалов. Значения указаны в таблицах; эти значения либо являются стандартизованными (например удельное электрическое сопротивление и коэффициенты термического сопротивления), либо общеприняты в практике (например удельная теплоемкость).

Для получения сравнимых результатов расчетные характеристики при коротком замыкании должны быть определены посредством настоящего метода с использованием значений, указанных в настоящем стандарте. Однако могут быть использованы и другие, более приемлемые для некоторых материалов постоянные значения, для таких случаев в приложении приведены соответствующие номинальные характеристики кабеля при коротком замыкании и различные постоянные значения.

В настоящем стандарте приняты наиболее неблагоприятные условия короткого замыкания, поэтому определяемые номинальные характеристики являются предельными.

Неадиабатический метод применим для любой длительности короткого замыкания. По сравнению с адиабатическим методом он дает значительное увеличение допустимых токов короткого замыкания для экранов, оболочек и, в некоторых случаях, жил сечением менее 10 мм2 (особенно при наличии проволочных экранов).

Для наиболее широко используемых жил силовых кабелей 5 % - это минимальное увеличение допустимого тока короткого замыкания, которое может быть использовано на практике. При этом для соотношения длительности короткого замыкания и площади поперечного сечения жилы менее 0,1 с/мм2 увеличение тока незначительно, и может быть использован адиабатический метод. Это характерно для большинства практических случаев.

Настоящий стандарт устанавливает следующую методику расчета:

а) вычисление адиабатического тока короткого замыкания;

б) вычисление поправочного коэффициента, учитывающего неадиабатический характер нагрева;

в) перемножение а) и б) и получение допустимого тока короткого замыкания.

Требования настоящего стандарта являются рекомендуемыми.

1. Обозначения

- постоянные, основанные на термических характеристиках окружающих или соседних материалов

- (мм2/с)½

- мм2/с

- постоянные, используемые в неадиабатической формуле для жил и проволок экранов

- мм/м

- К??м×мм2/Дж

Dit

- диаметр воображаемого коаксиального цилиндра, вписанного по внутренней поверхности впадин гофрированной оболочки

- мм

Doc

- диаметр воображаемого коаксиального цилиндра, описанного по наружной поверхности выступов гофрированной оболочки

- мм

F

- коэффициент учета неполного теплового контакта

-

I

- допустимый так короткого замыкания (среднее квадратическое значение для данной длительности

- А

IАД

- ток короткого замыкания, вычисленный на основе адиабатического нагрева (среднее квадратическое значение для данной длительности)

- А

ISC

- известный максимальный ток короткого замыкания (среднее квадратическое значение для данной длительности)

- А

K

- постоянная, зависящая от материала токопроводящего элемента

- Ас1/2/мм2

M

- коэффициент теплового контакта

- с-1/2

S

- площадь поперечного сечения токопроводящего элемента

- мм2

- постоянные, используемые в упрощенной формуле для жил и расположенных на расстоянии друг от друга проволок экранов

- (мм2/с)1/2

- мм2/с

d

- средний диаметр оболочки, экрана или брони

- мм

n

- число лент или проволок

-

t

- длительность короткого замыкания

- с

w

- ширина ленты

- мм

b

- величина, обратная температурному коэффициенту сопротивления при 0 °С

- К

d

- толщина оболочки, экрана или брони

- мм

e

- коэффициент учета тепловых потерь в соседние элементы

-

Qf

- конечная температура

- °С

Qi

- исходная температура

- °С

ri

- удельное термическое сопротивление окружающих или соседних неметаллических материалов

- К??м/Вт

r2, 3

- удельные термические сопротивления среды с каждой стороны оболочки, экрана или брони

- К??м/Вт

r20

- удельное электрическое сопротивление токопроводящего элемента при 20 °С

- Ом??м

sc

- удельная объемная теплоемкость токопроводящего элемента при 20°С

- Дж/К×м3

si

- удельная объемная теплоемкость окружающих или соседних неметаллических материалов

- Дж/К×м3

s1

- удельная объемная теплоемкость экрана, оболочки или брони

- Дж/К×м3

s2, 3

- удельная объемная теплоемкость среды с каждой стороны экрана, оболочки или брони

- Дж/К×м3

2. Допустимый ток короткого замыкания

Допустимый ток короткого замыкания определяют по формуле

I = ??IАД,

где      I - допустимый ток короткого замыкания, А;

            IАД - ток короткого замыкания, вычисленный на основе адиабатического нагрева;

            ?? - коэффициент, учитывающий отвод тепла в соседние элементы (см. пп. 5 и 6).

Для адиабатических расчетов  = 1.

3. Расчет адиабатического тока короткого замыкания

Формула адиабатического процесса нагрева при любой исходной температуре имеет следующий общий вид:

,

где      IАД - ток короткого замыкания (среднее квадратическое значение при данной длительности), вычисленный на основе адиабатического процесса, А;

            t - длительность короткого замыкания, с;

            К - постоянная, зависящая от материала токопроводящего элемента (Ас½/мм2) (см. табл. 1);

;

            S - площадь поперечного сечения токопроводящего элемента, мм2; для жил, указанных в ГОСТ 22483, можно использовать номинальное сечение;

            f - конечная температура, °С;

            i - исходная температура, °С;

             - величина, обратная температурному коэффициенту сопротивления токопроводящего элемента при 0 °С (К) (см. табл. 1);

            ln - loge;

            с - удельная объемная теплоемкость токопроводящего элемента при 20 °С, Дж/К×м3 (см. табл. 1);

            20 - удельное электрическое сопротивление токопроводящего элемента при 20 °С, Ом×м (см. табл. 1).

4. Расчет температуры при коротком замыкании

В некоторых случаях (например для систем с заземленной нейтралью через сопротивление) при известном максимальном токе короткого замыкания температуру жилы в конце короткого замыкания можно определить следующим образом:

,

где      ISC - известный максимальный ток короткого замыкания (среднее квадратическое значение для данной длительности).

5. Расчет неадиабатического коэффициента для токопроводящих жил и расположенных на расстоянии друг от друга проволок экранов

5.1. Общие положения

Общий вид эмпирического уравнения для неадиабатического коэффициента:

,

где      F - коэффициент учета неполного теплового контакта между жилой или проволоками и окружающими или соседними неметаллическими материалами, рекомендуемое значение - 0,7 (1,0 - для маслонаполненных кабелей);

            А, В - эмпирические постоянные, основанные на термических характеристиках окружающих или соседних неметаллических материалов:

 (мм2/с)½, где С1 = 2464 мм/м,

 (мм2/с), где С2 = 1,22 K??мм2/Дж;

            с - удельная объемная теплоемкость токопроводящего элемента, Дж/Км3;

            i - удельная объемная теплоемкость окружающих или соседних неметаллических материалов, Дж/Км3;

            i - удельное термическое сопротивление окружающих или соседних неметаллических материалов, К×м/Вт.

(Предлагаемые значения постоянных для этих материалов приведены в табл. 2).

5.2. Токопроводящие однопроволочные или многопроволочные жилы

Для обычных комбинаций материалов общая формула может быть упрощена следующим образом:

,

где      X и Y, включающие коэффициент теплового контакта 0,7 (1,0 для маслонаполненных кабелей), указаны в табл. 3.

5.3. Изолированные друг от друга проволоки экрана

5.3.1. Полностью уплотненные

Формула применима к проволокам экрана, расположенным на расстоянии не менее одного диаметра проволоки друг от друга и полностью окруженным неметаллическими материалами. Влияние тонких спирально наложенных выравнивающих лент не учитывают. Для обычных сочетаний материалов можно использовать упрощенную формулу, приведенную в п. 5.2; в иных случаях следует применять общую формулу, приведенную в п. 5.1 при F = 0,7. Ток вычисляют для одной проволоки и затем умножают на число проволок n, в результате чего получают полное значение тока короткого замыкания. Таким образом, во всех формулах используют площадь поперечного сечения одной проволоки.

5.3.2. Не полностью уплотненные

Этот метод также применим к проволокам экрана, расположенным под экструдированной трубкой; причем между проволоками имеется воздушное пространство. Влияние тонких спирально наложенных выравнивающих лент не учитывают. Используют общую формулу, приведенную в п. 5.1, при F = 0,5. Если проволоки расположены между двумя различными материалами, следует использовать среднее арифметическое значение удельных термических сопротивлений и удельных объемных теплоемкостей двух материалов. Ток определяют для одной проволоки и затем умножают на число проволок, в результате чего получают полное значение тока короткого замыкания. Таким образом, во всех формулах используют площадь поперечного сечения одной проволоки.

6. Расчет неадиабатического коэффициента для оболочек, экранов и проволок брони

Примечание. Важно правильно определить используемое в адиабатической формуле значение площади поперечного сечения оболочки или экрана.

6.1. Общие положения

Коэффициент ?? для оболочек, экранов и брони определяют по формуле

.

Коэффициент M определяют по формуле

, (c-½),

где      2, 3 - удельная объемная теплоемкость среды с каждой стороны экрана, оболочки или брони, Дж/Км3;

            2, 3 - удельное термическое сопротивление среды с каждой стороны экрана, оболочки или брони, К×м/Вт;

            1 - удельная объемная теплоемкость экрана, оболочки или брони, Дж/Км3;

             - толщина экрана, оболочки или брони, мм.

Предлагаемые тепловые постоянные для различных материалов указаны в табл. 2. Рекомендуется использовать значение F = 0,7, за исключением случаев, когда металлический элемент полностью соединен одной стороной с соседней средой, в этом случае можно использовать значение F = 0,9.

Значение  можно также определить по чертежу после того, как получено .